首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为( )
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为( )
admin
2018-12-19
33
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+4x
2
2
+4x
3
2
一4x
1
x
2
+4x
1
x
3
—8x
2
x
3
的规范形为( )
选项
A、f=z
1
2
+z
2
2
+z
3
2
。
B、f=z
1
2
一z
2
2
。
C、f=z
1
2
+z
2
2
一z
3
2
。
D、f=z
1
2
。
答案
D
解析
利用配方法将该二次型化为标准形
f(x
1
,x
2
,x
3
)=(x
1
一2x
2
+2x
3
)
2
,
则该二次型的规范形为f=z
1
2
。故选D。
转载请注明原文地址:https://jikaoti.com/ti/btWRFFFM
0
考研数学二
相关试题推荐
(1997年)设在闭区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0.记S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a),则【】
(2011年)设平面区域D由直线y=χ,圆χ2+y2=2y及y轴所围成,则二重积分χydσ=_______.
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2015年)设3阶矩阵A的特征值为2,-2,1,B=A2-A+E,其中E为3阶单位矩阵,则行列式|B|=_______.
方程y(4)一2y"’一3y=e一3x一2e一x+x的特解形式(其中a,b,c,d为常数)是()
用配方法化下列二次型为标准形:f(x1,x2,x3)=+2x1x2-2x1x3+2x2x3
设二次型f(χ1,χ2,χ3)=XTAX,已知r(A)=2,并且A满足A2-2A=0.则下列各标准二次型中可用正交变换化为厂的是().(1)2y12+2y22(2)2y12.(3)2y12+2y32(4)2y
随机试题
班集体是否有凝聚力,取决于()。
共产主义社会的生产资料所有制是
患者,男,60岁。近3天,自觉右侧胸疼,第二次X线检查显示右侧肋膈角消失。诊断肺结核伴右侧胸腔积液。连续监测法,常通过监测哪处波长吸光度的变化来计算酶的活性
患者,男性,30岁,右下颌骨体膨大3年,检查见右下颌骨体有一2cm×2cm×2cm的肿块,按之有乒乓球感。X线片示透明囊性阴影,呈多房性,房室大小不一致,阴影边缘呈切迹状。最可能的诊断是
A、.食管造影B、.上消化道造影C、.全胃肠造影D、.十二指肠低张造影E、.钡灌肠结肠癌检查时,选择
关于《劳动法》的适用范围,下列说法错误的是()。
当总体背景情况确定后,投资者就可以针对某一具体开发投资类型和地点进行更为详尽的分析。不论是什么类型的房地产开发项目,需要进行的详细分析不包括()。
税务行政诉讼应当遵循的原则,不包括()。
下列作品中属于我国文学史上著名散文游记的有()。
(2014年第27题)1912年3月中华民国临时参议院颁布的《中华民国临时约法》是中国历史上第一部具有资产阶级共和国宪法性质的法典。毛泽东曾称赞它“带有革命性、民主性”。其“革命性、民主性”主要体现在
最新回复
(
0
)