首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A一E)X=0的(A+E)X=0的解. 求A的特征值与特征向量.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A一E)X=0的(A+E)X=0的解. 求A的特征值与特征向量.
admin
2017-10-21
50
问题
设3阶矩阵A的各行元素之和都为2,又α
1
=(1,2,2)
T
和α
2
=(0,2,1)
T
分别是(A一E)X=0的(A+E)X=0的解.
求A的特征值与特征向量.
选项
答案
α
1
=(1,2,2)
T
是(A—E)X=0的解,即Aα
1
=α
1
,于是α
1
是A的特征向量,特征值为1. 同理得α
2
是A的特征向量,特征值为一1. 记α
3
=(1,1,1)
T
,由于A的各行元素之和都为2,Aα
3
=(2,2,2)
T
=2α
3
,即α
3
也是A的特征向量,特征值为2. 于是A的特征值为1,一1,2. 属于1的特征向量为cα
1
,c≠0. 属于一1的特征向量为cα
2
,c≠0. 属于2的特征向量为cα
3
,c≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/bsSRFFFM
0
考研数学三
相关试题推荐
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2—α3,α2+α3线性相关,则a=
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵). 求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
求方程组的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设A是n阶矩阵,λ是A的特征值,其对应的特征向量为X,证明:λ2是A2的特征值,X为特征向量.若A2有特征值λ,其对应的特征向量为X,X是否一定为A的特征向量?说明理由.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
随机试题
图书教材的验收一般分为质量验收和()。
患者男,45岁。经常咳嗽,最近出现咯血。痰液经抗酸染色,在蓝色背景下出现细长、粉红色的细菌,经2~6周培养后,发现菌落呈干燥颗粒状,不透明菌落,菌落颜色白色或米黄色。此菌很可能是
下列关于第一审的表述,正确的有()
对于财务报告中各类资产和负债的公允价值或特定价值的计量,国际上较通行的做法是(),以保障会计信息的客观和独立。
2000年,我国成立的银行业自律组织是()。
利用()可以自动地、无缝地、快速地整合信息,提供跨学科的信息获取。
【2015年湖南株洲】多元智能理论是新课程的理论基础之一,其提出者是_________。
改革开放以来,中国农学会______“献身、创新、求实、协作”的宗旨,始终不渝地坚持以推动农业科技进步、促进农村发展为己任,大力开展学术交流和科技普及,积极______和举荐人才,为提高广大农民科技素质、加快农业科技进步作出了重要贡献。填入划横线部
结合材料回答问题:材料1敦煌莫高窟是中华文化宝库中的艺术瑰宝,也是著名的世界文化遗产。近年来,莫高窟游客逐年增长,2012年全年接待游客量达到80万人次。旅游旺季时,平均每天游客量逾4000人次,最多时约7000人次,而其
社会存在与社会意识的辩证关系体现在()
最新回复
(
0
)