首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________。
admin
2019-03-13
59
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组Ax=b的通解是___________。
选项
答案
([*],0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系只含有4一r(A)=1个解向量。又因为
(α
1
+αη+2α
3
)一(3α
1
+α
2
)=2(α
3
一α
1
)=(0,一4,一6,一8)
T
是Ax=0的解,所以其基础解系为(0,2,3,4)
T
,由
A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,
可知
(α
1
+α
2
+2α
3
)是方程组Ax=b的一个解,根据非齐次线性方程组的解的结构可知,其通解是(
,0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数。
转载请注明原文地址:https://jikaoti.com/ti/a3BRFFFM
0
考研数学三
相关试题推荐
证明函数恒等式arctanx=x∈(—1,1)。
设函数f(x)=且λ>0,则∫—∞∞xf(x)dx=________。
设二元函数计算二重积分f(x,y)dσ,其中D={(x,y)||x|+|y|≤2}。
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1,β2,…,βs也为Ax=0的一个基础解系。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设A是三阶矩阵,其特征值是1,3,一2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,—α2),则P—1AP=()
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+α2一2α3,(α2一α1),α1一3α2+2α3中,是方程组Ax=0解向量的共有()
下列二次型中是正定二次型的是()
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
对于任意两事件A和B,若P(AB)=0,则()
随机试题
下列不是环状软骨的结构的是
监控量测信息反馈应以位移反馈为主,主要依据时态曲线的形态对围岩稳定性、支护结构的工作状态、对周围环境的影响程度进行判定,验证和优化设计参数,指导施工。()
从2010年开始,我国居民消费价格指数(CPI)涨幅呈现逐月逐季加快趋势,2010年和2011年居民消费价格指数分别同比上涨3.3%和5.4%。为实现当年宏观经济目标,中国人民银行在2011年6次上调法定存款准备金率,3次上调存贷款基准利率。2012年以来
下列不属于生物科学素养内涵的是()。
拼贴画时要注意__________和__________的对比,根据画面的效果需要处理__________的关系。
给定资料1.2013年11月中国共产党召开的十八届三中全会,是全面深化改革的一次总动员和总部署。全会审议通过的《中共中央关于全面深化改革若干重大问题的决定》(以下简称《决定》),围绕“完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代
根据我国《宪法》的规定,享有修改宪法提议权的主体是()。
为毛泽东思想的萌芽做出较大贡献的中共领导人主要有
Iunderstood__________________(学会面对现实的真正价值).
TherowoveraPhiladelphiaschooldistrictaccusedofsecretlyspyingonpupilsthroughlaptopcamerasescalatedtodayafterit
最新回复
(
0
)