首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
admin
2017-12-29
46
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n—r+1
,是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n—r+1
η
n—r+1
,其中k
1
+…+k
n—r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n—r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,…,ξ
n—r
=η
n—r
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n—r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n—r
,使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n—r
ξ
n—r
=0, 即 l
1
(η
2
一η
1
)+l
2
(η
3
一η
1
)+…+l
n—r
(η
n—r+1
一η
1
)=0, 也即 一(l
1
+l
2
+…+l
n—r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n—r
η
n—r+1
=0。 由η
1
,η
2
,…,η
n—r+1
线性无关知 一(l
1
+l
2
+…+l
n—r
)=l
1
=l
2
=…=l
n—r
=0, 这与l
1
,l
2
,…,l
n—r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n—r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n—r
,线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n—r+1
ξ
n—r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n—r+1
(η
n—r+1
一η
1
), 则x=η
1
(1一k
2
一k
3
一…一k
n—r+1
)+k
2
η
2
+k
3
η
3
+…+k
n—r+1
η
n—r+1
, 令k
1
=1一k
2
一k
3
一…一k
n—r+1
,则k
1
+k
2
+k
3
+…+k
n—r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n—r+1
η
n—r+1
恒成立。
解析
转载请注明原文地址:https://jikaoti.com/ti/7JKRFFFM
0
考研数学三
相关试题推荐
已知方程组是同解方程组,试确定参数a,b,c.
若函数φ(x)及ψ(x)是n阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1.又x>x0时,φ(n)(x)>ψ(k)(x0).试证:当x>x0时,φ(x)>ψ(x).
试证明:曲线恰有三个拐点,且位于同一条直线上.
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1一eλX的概率密度函数fy(y).
计算定积分
求微分方程的通解,并求满足y(1)=0的特解.
[*]本题常规的求解方法是先把根号里面配方,再用三角代换,但计算量较大,实际上,本题根据定积分几何意义立刻知道应填,事实上,该积分在几何上表示单位圆(x一1)2+y2≤1面积的,如图1.1.
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解.
设z=f(x,y),x=g(y,z)+其中f,g,φ在其定义域内均可微,求
随机试题
移液管应用干净的()包好两端,然后至于专用架上存放备用。
毛泽东思想活的灵魂的三个基本方面是
用鸡胚增殖禽流感病毒的最适接种部位是()
我国民法的基本原则主要有()。
()属于《建设工程勘察合同文本》中规定的发包人的责任。
按照《建设工程设计合同(示范文本)》规定,设计人按合同规定时限交付设计资料及文件后,如果在1年内项目未开始施工,则设计人()
根据我国《企业效绩评价操作细则(修订)》的规定,反映资产营运状况的基本指标有()
下列各项中,应征收耕地占用税的有()。
行政机关若不依法履行政府信息公开的义务,社会监督可以通过举报制度来实现,受理举报的单位有()。
我一生走南闯北,甚至出访欧美,然而想不到对自己少年时______的松花江,却______。填入横线部分最恰当的一项是()。
最新回复
(
0
)