首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
设矩阵。当k为何值时,存在可逆矩阵P,使得P—1AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
admin
2018-12-19
35
问题
设矩阵
。当k为何值时,存在可逆矩阵P,使得P
—1
AP为对角矩阵?并求出矩阵P和相应的对角矩阵。
选项
答案
矩阵A的特征多项式为 |λE—A|=[*]=(λ+1)
2
(λ一1)。 则A的特征值为λ
1
=λ
2
=一1,λ
3
=1。 矩阵A与对角矩阵相似的充要条件是属于特征值λ=一1的线性无关的特征向量有两个,即线性方程组(一E一A)x=0有两个线性无关的解向量,则r(A+E)=1。对矩阵A+E作初等行变换得 [*] 当k=0时,r(A+E)=1。此时,由(一E一A)x=0解得属于特征值一1的两个线性无关的特征向量为α
1
=(一1,2,0)
T
,α
2
=(1,0,2)
T
;由(E一A)x=0解得属于特征值1的特征向量为α
3
=(1,0,1)
T
。 令可逆矩阵P=(α
1
,α
2
,α
3
),则P
—1
AP=[*]。
解析
转载请注明原文地址:https://jikaoti.com/ti/YdWRFFFM
0
考研数学二
相关试题推荐
利用代换u=ycosx将微分方程y"cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解.
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=_____________.
设A为三阶实对称矩阵,且存在正交矩阵Q=,使得QTAQ=,又令B=A2+2E,求矩阵B.
(2014年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
(2010年)设已知线性方程组Aχ=b存在2个不同的解.(Ⅰ)求λ,a;(Ⅱ)求方程组Aχ=b的通解.
(1997年)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
(2007年)设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5=4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α是矩阵B的特征向量,并求B的全部特征值与特征向量;
设A是n阶矩阵,λ是A的r重特征根,A的对应于λ的线性无关的特征向量是k个,则k=____________。
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值.x1,x2是分别属于λ1和λ2的特征向量,试证明:x1+x2不是A的特征向量.
随机试题
Althoughtheemployees’unionandcompanymanagement,enteringintocontractnegotiations,bothissuedstatementsencouraging___
在近端小管中滤出的HCO3-被重吸收的主要形式是
某男性,70岁,70kg。请你为他做出合理的能量和营养素建议。每天应摄入蛋白质()。
根据2000年《国际贸易术语解释通则》的规定,下列哪几个国际贸易术语规定货物的风险自装运港货物越过船舷时从卖方转移给买方?
法律尽职调查更多的是定位于风险发现,其目的主要有()。Ⅰ.确认目标企业的合法成立和有效存续Ⅱ.核查目标企业所提供文件资料的真实性、准确性和完整性Ⅲ.充分了解目标企业的组织结构、资产和业务的产权状况和法律状态,确认企业产权、业务资质以及其控股结构
下列不属于营业税扣缴义务人的是()。
下列哪些是构成交通事故的间接原因?()
文明是人类社会的基本属性,是我们党积极倡导的社会主义核心价值理念,是当代中国的核心价值追求之一。文明在引领和指示当代中国的发展进步方面具有十分重要的地位,发挥着十分重要的作用。______。这迫切需要进一步廓清文明的要义,深化对文明及文明建设的思想认识并取
只有具备足够的资金投入和技术人才,一个企业的产品才能拥有高科技含量。而这种高科技含量,对于一个产品长期稳定地占领市场是必不可少的。以下哪项情况如果存在,最能削弱以上断定?
在VisualFoxPro中,以下描述中错误的是
最新回复
(
0
)