已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。

admin2022-09-05  31

问题 已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f ’(x)严格单调减少,且f(1)=f’(1)=1,则________。

选项 A、在(1-δ,1)和(1,1+δ)内均有f(x)<x
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x
C、在(1-δ,1)内,f(x)<x,在(1,1+δ)内,f(x)>x

D、在(1-δ,1)内,f(x)>x,在(1,1+δ)内,f(x)<x

答案A

解析 设F(x)=f(x)-x,则 F(1)=f(1)-1=0.
F’(x)=f’(x)-1,
F’(1)=f’(1)-1=0.
F"(x)=f"(x),由f’(x)在(1-δ,1+δ)内严格单调减少知F "(x)<0.从而F’(x)在(1-δ,1+δ)内单调减少,即x∈(1-δ,1)时,F’(x)>F’(1)=0;x∈(1,1+δ)时,F’ (x)<F (1)=0.
当x∈(1-δ,1)时,由F’(x)>0知F(x)单增,即F(x)<F(1)=0,也即f(x)<x;
当x∈(1,1+δ)时,由F’(x)>0知F(x)单减,即F(x)<F(1)=0,也即f(x)<x.
故应选(A).
转载请注明原文地址:https://jikaoti.com/ti/YPfRFFFM
0

最新回复(0)