首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
admin
2018-11-23
22
问题
设A是n阶矩阵,k为正整数,α是齐次方程组A
k
X=0的一个解,但是A
k-1
α≠0.证明α,Aα,…,A
k-1
α线性无关.
选项
答案
设c
1
α+c
2
α+…+c
k
A
k-1
α=0,要推出每个c
i
=0. 先用A
k-1
乘上式两边,注意到当m≥k时,A
m
α=0(因为A
k
X=0),得到c
1
A
k-1
α=0. 又因为A
k-1
α≠0,所以c
1
=0.上式变为c
2
Aα+…+c
k
A
k-1
α=0. 再用A
k-2
乘之,可得到c
2
=0. 如此进行下去,可证明每个c
i
=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/Y51RFFFM
0
考研数学一
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设f(x2—1)=,且f[φ(x)]=lnx,求∫φ(x)dx.
设a为常数,讨论方程ex=ax2的实根个数.
设f(x)在[a,b]上满足|f"(x)|≤2,且f(x)在(a,b)内取到最小值.证明:|f’(a)|+|f’(b)|≤2(b一a).
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
计算下列n阶行列式:
(88年)设4×4矩阵A=(αγ2γ3γ4),B=(βγ2γ3γ4),其中α,β,γ2,γ3,γ4均为4维列向量,且已知行列式|A|=4,|B|=1,则行列式|A+B|=______.
(96年)4阶行列式的值等于
(91年)设A是n阶正定阵,E是n阶单位阵,证明A+E的行列式大于1.
随机试题
负载流过交流电流i=10sin314tA,电压则负载是()。
大面积烧伤病人24小时内主要的护理措施是
关于取得注册测绘师资格应当具备的业务条件,说法错误的是()。
赵兰特别喜欢自己活泼可爱的小侄女,打算在她12岁生日时为其侄女投保一份定额寿险,没想到保险公司拒保,其拒保的理由是()。
2018年2月,某企业发生自用房地产应交房产税3000元,应交增值税15000元、车船税5000元、城镇土地使用税1000元、消费税17000元,支付印花税500元。不考虑其他因素,该企业当月应计入管理费用的税金为()元。
参与性技术中不包括()。
在社会主义市场经济条件下,我国宏观经济调控的主要手段是行政手段。()
从中西文化比较的角度提出德、智、体“三育论”和“体用一致”的文化教育观的思想家是()
欧洲美元是指()。
Swans,notedforgracefulmovementsinthewater,havebeenthesubjectofmanypoetry,fairytales,legends,andmusicalcompos
最新回复
(
0
)