首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,且f"(x)≠0,又f(x,+h)=f(x)+f’(x+θh)h(0<θ<1).证明:θ=1/2.
设f(x)二阶连续可导,且f"(x)≠0,又f(x,+h)=f(x)+f’(x+θh)h(0<θ<1).证明:θ=1/2.
admin
2018-05-21
27
问题
设f(x)二阶连续可导,且f"(x)≠0,又f(x,+h)=f(x)+f’(x+θh)h(0<θ<1).证明:
θ=1/2.
选项
答案
由泰勒公式得 f(x+h)=f(x)+f’(x)h+[*]h
2
,其中ξ介于x与x+h之间. 由已知条件得 f’(x+θh)h=f’(x)h+[*]h
2
,或f’(x+θh)-f’(x)=[*]h, 两边同除以h,得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/XMVRFFFM
0
考研数学一
相关试题推荐
周期函数f(x)在(一∞,+∞)内可导,周期为4,又=一1,则y=f(x)在点(5,f(5))处的切线斜率为()
设x1=a>0,y1=b<0,(a≤b),且xn+1=,n=1,2,…,证明:
设函数f(x)连续且恒大于零,其中Ω(t)={x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.(1)讨论F(t)在区间(0,+∞)内的单调性.(2)证明当t>0时,F(t)>G(t).
设曲线y=y(x)由参数方程确定,(Ⅰ)讨论该曲线的凹凸性;(Ⅱ)求该曲线在t=0处的曲率圆的直角坐标方程.
设四维向量组α1=(1,1,4,2)T,α2=(1,一1,一2,6)T,α3=(一3,一1,a,一9)T,β=(1,3,10,a+b)T.问(Ⅰ)当a,b取何值时,β不能由α1,α2,α3线性表出;(Ⅱ)当a,b取何值时,β能由α1,α2,α3线性表出
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ3,…,Aξn一1=ξn,Aξn=0,且ξn≠0.(Ⅰ)证明ξ1,ξ2,…,ξn线性无关;(Ⅱ)求Ax=0的通解;(Ⅲ)求出A的全部特征值和特征向量,并证明A不可
设齐次线性方程组(Ⅰ)为又已知齐次线性方程组(Ⅱ)的基础解系为α1=(0,1,1,0)T,α2=(-1,2,2,1)T.试问a,b为何值时,(Ⅰ)与(Ⅱ)有非零公共解?并求出所有的非零公共解.
现有k个人在某大楼的一层进入电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
设f(x)为非负连续函数,且满足f(x)f(x-t)dt=sin4x,求f(x)在[0,]上的平均值.
随机试题
药学部门的质量管理制度包括
化脓性关节炎与结核性关节炎的主要X线不同点
女性,32岁,进行性膀胱刺激症状,经抗生素治疗不见好转,且伴有右侧腰部胀痛及午后潮热。为了解患肾功能及形态的病理改变,最有价值的检查是
与NSE含量密切相关的肿瘤是
流行性腮腺炎应隔离至
进行项目的经济分析时,项目的主要投入物和产出物,原则上应采用()。
水力发电工程的工程项目划分一般分为()级。
居民企业来源于境外的应税所得,已在境外缴纳的所得税税额,可以在抵免限额范围内从当期应纳税额中抵免,超过抵免限额的部分可以在以后5个年度内,用每年度抵免限额抵免当年应抵税额之后的余额进行抵补。()
WhenIwaswalkingdownthestreettheotherday,Ihappenedtonoticeasmallbrownleatherwalletlyingonthesidewalk.Ipic
______thechoiceofafinehomedowntownandamodestoneinthesuburbs,thelatterwillwin.
最新回复
(
0
)