设f(x)二阶连续可导,且f"(x)≠0,又f(x,+h)=f(x)+f’(x+θh)h(0<θ<1).证明:θ=1/2.

admin2018-05-21  27

问题 设f(x)二阶连续可导,且f"(x)≠0,又f(x,+h)=f(x)+f’(x+θh)h(0<θ<1).证明:θ=1/2.

选项

答案由泰勒公式得 f(x+h)=f(x)+f’(x)h+[*]h2,其中ξ介于x与x+h之间. 由已知条件得 f’(x+θh)h=f’(x)h+[*]h2,或f’(x+θh)-f’(x)=[*]h, 两边同除以h,得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/XMVRFFFM
0

相关试题推荐
最新回复(0)