首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h) +λ2f(2h) +λ3f(3h) 一f(0)是比h2高阶的无穷小.
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h) +λ2f(2h) +λ3f(3h) 一f(0)是比h2高阶的无穷小.
admin
2017-04-24
40
问题
设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0,f’(0)≠0,f"(0)≠0.证明:存在惟一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h) +λ
2
f(2h) +λ
3
f(3h) 一f(0)是比h
2
高阶的无穷小.
选项
答案
只需证存在惟一的一组实数λ
1
,λ
2
,λ
3
,使 [*] 由题设和洛必达法则,从 [*] 知,λ
1
,λ
2
,λ
3
应满足方程组 [*] 因为系数行列式 [*] 所以上述方程组的解存在且惟一,即存在惟一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h) 一f(0)是比h
2
高阶的无穷小.
解析
转载请注明原文地址:https://jikaoti.com/ti/WtzRFFFM
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶连续可导.证明:存在ξ∈(a,b),使得f(a)+f(b)-2f(a+b/2)=(b-a)2/4f"(ξ).
设f(x)在[0,1]上可导,f(0)=0,|f’(x)|≤1/2|f(x)|.证明:f(x)=0,x∈[0,1].
下列命题成立的是().
A、f(0)是f(x)的极大值B、f(0)是f(x)的极小值C、(0,f(0))是曲线y=f(x)的拐点D、f(0)不是f(x)的极值,(0,f(0))也不是曲线y=f(x)的拐点B
A、x=0是f(x)的零点B、(0,f(0))是y=f(x)的拐点C、x=0是f(x)的极大值点D、x=0是f(x)的极小值点D
设f"(x)>0,且f(0)=0,则-f(-1),f(1),f’(0)的大小次序为()
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴旋转一周而得的旋转体的体积V(a).
利用定积分计算极限
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0、OM与曲线L所围成的曲边扇形面积值等于L上M0、M两点间弧长值的一半,求曲线L的方程.
随机试题
不能显示先天性耳道畸形的摄影位置为
广告词:“一个苹果让牛顿吸引了世界,一壶沸水让瓦特转动了世界,一个元素让爱迪生点燃了世界……”,其中“一个苹果让牛顿吸引了世界”是指()。
环境噪声现状测点布置一般要覆盖整个评价范围,但重点要布置在()。
中标人经()同意,可将中标项目的部分工作分包给他人完成。
()通常只进行当日的买卖,一般不会持仓过夜。
我国场外认购LOF份额,应使用()账户进行认购。
下列哪一项不属于基金客户个性化服务?()
思想体系
RisingInequalityIsHoldingBacktheUSEconomyA)Inannouncinghisrunforthepresidencylastmonth,JebBushhassetanamb
Researchershaveidentified1.4millionanimalspeciessofar—andmillionsremaintobediscovered,named,andscientificallyde
最新回复
(
0
)