设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.

admin2016-10-24  29

问题 设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤ab[f’(x)]2dx.

选项

答案由f(a)=0,得f(x)一f(a)=f(x)=f’(t)dt,由柯西不等式得 f2(x)=(∫axf’(t)dt)2≤∫ax12dt∫axf’2(t)dt≤(x一a)∫abf’2(x)dx 积分得∫abf2(x)dx≤∫ab(x一a)dx.f’2(x)dx=[*]∫abf’2(x)dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/WYxRFFFM
0

最新回复(0)