设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数), (1)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx. (2)利用(1)结论计算定积分|sinx|arctanex

admin2016-04-01  29

问题 设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数),
(1)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx.
(2)利用(1)结论计算定积分|sinx|arctanexdx.

选项

答案(1)∫-aaf(x)g(x)dx=∫-a0f(x)g(x)dx+∫0af(x)g(x)dx, 令u=-x,∫-a0f(x)g(x)dx=-∫a0f(-u)g(-u)du=∫0af(x)g(x)dx, 所以∫-aaf(x)g(x)dx=∫0af(-x)g(x)dx+∫0af(x)g(x)dx =∫0a[f(-x)+f(x)]g(x)dx=A∫0ag(x)dx. (2)取f(x)=arctanex,g(x)=|sinx|,a=π/2,且f(x)+f(-x)=arctanex+arctane-x=π/2, [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/VRgGFFFM
本试题收录于: 数学题库普高专升本分类
0

最新回复(0)