首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
admin
2019-07-22
40
问题
设α
1
,…,α
n
为n个m维向量,且m<n.证明:α
1
,…,α
n
线性相关.
选项
答案
方法一 向量组α
1
,…,α
n
线性相关的充分必要条件是方程组x
1
α
1
+…+x
n
α
n
=0有非零解,因为方程组x
1
α
1
+…+x
n
α
n
=0中变量有n个,约束条件最多有m个且m<n,所以方程组x
1
α
1
+…+x
n
α
n
=0一定有自由变量,即方程组有非零解,故向量组α
1
,…,α
n
线性相关. 方法二 令A=(α
1
,…,α
n
),r(A)≤min{m,n)=m<n,因为矩阵的秩与矩阵的行向量组与列向量组的秩相等,所以向量组α
1
,…,α
n
的秩不超过m,于是向量组α
1
,…,α
n
线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/VOERFFFM
0
考研数学二
相关试题推荐
设周期为4的函数f(χ)处处可导,且,则曲线y=f(χ)在(-3,f(-3))处的切线为_______.
设f(χ)二阶可导,且=0,f(1)=1,证明:存在ξ∈(0,1),使得ξf〞(ξ)+2f′(ξ)=0.
=_______.
设n维行向量α=(,0,…,0,),矩阵A=I一αTα,B=I+2αTα,其中I为n阶单位矩阵,则AB=
设=b,其中a,b为常数,则().
设L:y=e-χ(χ≥0).(1)求由y=e-χ、χ轴、y轴及χ=a(a>0)所围成平面区域绕χ轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设函数f(x)在|x|
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则=()
(04年)设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[一2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处
随机试题
下列不属于李白诗歌代表作的是()
在我国,文书作为公文与案卷的含义被确定和沿用的是
不符合细菌性肝脓肿临床表现的是
某孕妇孕36周,在乘坐的公共汽车急刹车后突感剧烈腹痛难忍。血压140/100mmHg。检查:阴道无流血,子宫似足月妊娠大小,硬如板状,压痛明显,胎位不清,胎心约90次/分。对该孕妇的正确处理是
女性,30岁,主诉每当她听到自来水流动的声音时,就同时听到有人在议论她的声音,该病人最可能是患
()与审慎的会计准则相抵触。
《韩非子.喻老》中的《扁鹊见蔡桓公》一文记载,神医扁鹊四次面见蔡桓公,便知其腠理、肌肤,逐渐发展到肠胃、骨髓。该典故说明扁鹊看病所用的诊法是()。
根据我国《刑法》的规定,自首的必备条件包括()。
中国开始有资本主义性质的近代工业的时间是( )
Supermarket’sNewStrategyOnesupermarketinTokyohasmanagedtosolvetheproblemsofshoplifting,mistakesbycashiers,
最新回复
(
0
)