首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
admin
2016-04-08
38
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数[*]易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且[*]根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即[*]所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x0
∈(0,x
0
)c(0,δ),使得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/V7DRFFFM
0
考研数学二
相关试题推荐
设函数f(x)=的可去间断点为x=0,则a,b满足().
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Oy轴旋转一周所产生的两个旋转体的体积之比.
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:(1)存在x1∈[0,1],使得|f(x1)|>4;(2)存在x2∈[0,1],使得|f(x2)|=4.
求函数f(t)=6∫01x|x-t|dx的解析式.
证明方程分别有包含于(1,2),(2,3)内的两个实根.
设函数f(x)=在(-∞,+∞)上连续,且f(x)=0,则().
设e<a<b<e2,证明:不等式<ln2b-ln2a<.
设f(x)在[a,b](a>0)上连续,在(a,b)内可导,f(a)=0,f(b)=2,f’(x)≠0,证明:存在ξ,η∈(a,b),使得
随机试题
只在本企业的竞争对手中购进出版物,是不具有忠诚展的客户。()
申请人对植物新品种复审委员会的决定不服的,可以自接到通知之日起()日内向人民法院提起诉讼。
A.胃失和降,逆气动膈B.胃气壅滞,气逆干中C.肝气犯胃,肝胃不和D.脾胃虚寒,胃中无火E.痰瘀互结,食道狭窄呃逆的病机是
当利用建筑物外立面混凝土柱内的主钢筋作防雷引下线时,接地测试点应离地()。
多层砖砌体房屋突出屋顶的(),构造柱应伸到顶部,并与顶部圈梁连接。
鲁迅批判中国人的劣根性,批判中国人的面子心理、看客心态、马虎作风,但他的批判是建立在自省和自剖基础上的,不是_________,而是带有一种悲悯和________的。填入画横线部分最恰当的一项是:
当x>0时,证明:
将E-R图转换为关系模式时,实体和联系都可以表示为
Manyteachersbelievethattheresponsibilitiesforlearningliewiththestudent.【C1】______alongreadingassignmentisgiven,
A、Afirst-classletter.B、Urgentmail.C、Arailwayletter.D、Anairwaypacket.A
最新回复
(
0
)