设f(x)在x=2处连续,则,则曲线y=f(x)在点(2,f(2))处的切线方程为_____________.

admin2019-11-25  49

问题 设f(x)在x=2处连续,则,则曲线y=f(x)在点(2,f(2))处的切线方程为_____________.

选项

答案y-[*](x-2)

解析=-1得f(2)=,且
-1==-2f’(2).
则f’(2)=,曲线y=f(x)在点(2,f(2))处的切线方程为y-(x-2).
转载请注明原文地址:https://jikaoti.com/ti/V5iRFFFM
0

最新回复(0)