设|f’(x)|≤M,x∈[0,1],且f(0)=f(1)=0,试证:|∫01f(x)dx|≤M.

admin2017-07-26  38

问题 设|f’(x)|≤M,x∈[0,1],且f(0)=f(1)=0,试证:|∫01f(x)dx|≤M.

选项

答案因为∫01f(x)dx=∫01f(x)d(x—c)=(x—c)f(x)|01一∫01(x—c)f’(x)dx =一∫01(x—c)f’(x)dx, 所以 |∫01f(x)dx|≤|∫01(x—c)f’(x)dx|≤∫01(x—c)||f’(x)dx ≤M∫01|x—c|dx=M[∫0c(c—x)dx+∫c1(x—c)dx] [*]

解析 要证结论是比较积分与被积函数的导函数值之大小,用分部积分法建立f(x)与f’(x)定积分的关系式,然后再放缩.由f(0)=f(1)=0可知,分部积分应注意应用小技巧dx=d(x—c),c∈[0,1].
转载请注明原文地址:https://jikaoti.com/ti/V2SRFFFM
0

最新回复(0)