首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是( )
admin
2018-02-07
80
问题
已知β
1
,β
2
是非齐次线性方程组Ax=b的两个不同的解,α
1
,α
2
是对应的齐次线性方程组Ax=0的基础解系,k
1
,k
2
为任意常数,则方程组Ax=b的通解是( )
选项
A、k
1
α
1
+k
2
(α
1
+α
2
)+
。
B、k
1
α
1
+k
2
(α
1
一α
2
)+
。
C、k
1
α
1
+k
2
(β
1
+β
2
)+
。
D、k
1
α
1
+k
2
(β
1
一β
2
)+
。
答案
B
解析
对于A、C选项,因为
(b一b)=0,
所以选项A、C中不含有非齐次线性方程组Ax=b的特解,故均不正确。
对于选项D,虽然β
1
一β
2
是齐次线性方程组Ax=0的解,但它与α
1
不一定线性无关,故D也不正确,所以应选B。
事实上,对于选项B,由于α
1
,α
1
一α
2
与α
1
,α
2
等价(显然它们能够互相线性表示),故α
1
,α
1
一α
2
也是齐次线性方程组的一组基础解系,而由
(Aβ
1
+Aβ
2
)
=
(b+b)=b,
可知
是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,B选项正确。
转载请注明原文地址:https://jikaoti.com/ti/UxdRFFFM
0
考研数学二
相关试题推荐
[*]
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.求二次型f的矩阵的所有特征值;
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2。的秩为_________.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
随机试题
讨论f(c)=在x=0处的连续性与可导性.
休克诊断DIC的标准包括_________。
符合肾结核的描述是
下列关于章门穴的叙述,错误的是
患者,男性,24岁。主因发现阴茎部皮疹1天就诊。患者在洗澡时发现冠状沟处皮疹,不痛不痒,否认不洁性接触史。查体:冠状沟处可见针尖大小、表面光滑的乳白色小丘疹,直径1~2mm,圆顶状,呈线状排列。本病诊断的主要依据是
利用中药中各成分沸点的差别进行提取分离的方法是
下列各项中,属于会计工作的政府监督范畴有( )。
从一条指令的启动到下一条指令的启动的间隔时间称为()。
Inaprovocativeresearchpaperfromacoupleofyearsago,economistRobertGordonofNorthwesternUniversityintheUSAasked
WhydidthemangotoFrance?
最新回复
(
0
)