首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-12
34
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE-A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为考ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/UoERFFFM
0
考研数学二
相关试题推荐
(2003年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βa线性表示,则
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
向量组α1=(1,-a,1,1)T,α2=(1,1,-a,1)T,α3=(1,1,1,-a)T的秩为______.
将n阶可逆方阵A的第i行与第j行对换后的矩阵记作B,(1)证明:B可逆;(2)求AB-1.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
证明:方阵A与所有同阶对角矩阵可交换的充分必要条件是A为对角矩阵.
计算其中D是由圆周x2+y2=4,x2+y2=1及直线y=0,y=x所围的位于第一象限的闭区域.
设f在点(a,b)处的偏导数存在,求
在极坐标变换下将f(χ,y)dσ化为累次积分,其中D为:χ2+y2≤2ax与χ2+y2≤2ay的公共部分(a>0).
随机试题
简述竞争对手分析的四个方面。
为患者进行吸痰时不妥的是()。
女性,50岁。因患短肠综合征,予全胃肠外营养(1FPN)治疗。应用l周时患者出现昏迷,但尿内无酮体。患者既往曾有空腹血糖高(11mmol/L)病史。此瘸的预防主要是
下列属于热原污染途径的错误说法的是()
现场施工准备的质量控制中关于施工图纸的现场核对,应核对( )。
申请领取施工许可证,应当具备下列条件:( )。
在拟订航次租船合同条款时,为什么代理人的经纪人必须列明委托人的名称、住址或主要营业场所地址?
纳税人不能提供完整、准确的收入及成本、费用凭证,不能正确计算其应纳税所得额的,由税务机关核定其应纳税所得额。核定的方法有( )。
按照通信专业划分,通信业务资费主要包括()。
卡车司机甲在行车途中,被一吉普车超过,甲顿生不快,便加速超过该车。不一会儿,该车又超过了甲,甲又加速超过该车。当该车再一次试图超车行至甲车左侧时,甲对坐在副座的乙说:“我要吓他一下,看他还敢超我。”随即将方向盘向左边一打,吉普车为躲避碰撞而翻下路基,司机重
最新回复
(
0
)