首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求函数y=(x-1)eπ/2 +arctanx的单调区间和极值,并求该函数图形的渐近线.
求函数y=(x-1)eπ/2 +arctanx的单调区间和极值,并求该函数图形的渐近线.
admin
2013-09-15
86
问题
求函数y=(x-1)e
π/2 +arctanx
的单调区间和极值,并求该函数图形的渐近线.
选项
答案
[*] 得驻点x
1
=0,x
2
=-1,列表如下: [*] 则单调递增区间为(-∞,-1),(0,+∞),单调递减区间为(-1,0), 极小值为f(0)=-e
π/2
,极大值为f(-1)=-2e
π/4
. 由于[*],则得一条渐近线y=e
π
(x-2). 又由于[*],从而得另一条渐近线y=x-2. 而y(x)在(-∞,+∞)上连续,因此无垂直渐近线, 综上,曲线有两条斜渐近线:y=e
π
(x-2)和y=x-2.
解析
转载请注明原文地址:https://jikaoti.com/ti/UbDRFFFM
0
考研数学二
相关试题推荐
(2015年)设函数f(x)在(一∞,+∞)连续,其二阶导函数f"(x)的图形如右下图所示,则曲线y=f(x)的拐点个数为()
(2000年)在电炉上安装了4个温控器,其显示温度的误差是随机的。在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等
设A,B是可逆矩阵,且A与B相似,则下列结论错误的是__________.
设函数f(x)在区间[0,2]上具有连续导数,f(0)=f(2)=0,M=,证明:若对任意的x∈(0,2),|f′(x)|≤M,则M=0.
(08年)如图,曲线段的方程为y=f(χ),函数f(χ)在区间[0,a]上有连续的导数,则定积分∫0aχf′(χ)dχ等于【】
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2。且α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设连续函数f(x)满足求
在抛物线y=ax2+bx+c上,x=___________处曲率最大.
直线y=3x+1在点(0,1)的曲率半径为__________.
设f(x)车区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(I)存在η∈(1/2,1),使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得fˊ(ξ)-λ[f(ξ)-ξ]=1.
随机试题
Ineverycultivatedlanguagetherearetwogreatclassesofwordswhich,takentogether,comprisethewholevocabulary.First,t
结核菌素皮肤试验结果阳性的判断标准是
德国公民甲在日本将韩国公民乙撞伤,乙在中国内地起诉,依据我国国际私法规则,本案不应适用的法律有()。
粉尘是指能较长时间悬浮于空气中的固体微粒,直径大多数为()μm。
根据《水工建筑物地下开挖工程施工技术规范》DL/T5099—1999,采用电力引爆法,装药时距工作面()m以内时,应断开电源。
【2015年淄博市】根据马克思主义理论观点,教育起源于()。
A、 B、 C、 D、 C
主机与I/O设备传送数据时,CPU效率最低的是()。
打开工作簿文件EXCEL.XLSX。选择“职称”、“职称百分比”和“出国进修百分比”三列数据区域的内容建立“簇状柱形图”,图表标题为“师资隋况统计图”,图例位置靠上;将图插入到表A8:E24单元格区域,保存EXCEL.XLSX文件。
Itwasin1930sthatscientistsfirst______theideaoftheatombomb.
最新回复
(
0
)