首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2018-05-25
25
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选C.
转载请注明原文地址:https://jikaoti.com/ti/QvIRFFFM
0
考研数学三
相关试题推荐
设φ(x)是以2π为周期的连续函数,且φˊ(x)=φ(x),φ(0)=0.(1)求方程yˊ+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
求
设随机变量(X,Y)的概率密度为求Z=X+2Y的分布函数FZ(z).
设随机变量X1,X2,…,Xn相互独立,且Xi服从参数为λi的指数分布,其密度为求P{X1=min{X1,X2,…,Xn}}.
设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi,i=1,2,…,k,用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,…,Xk,设仪器都没有系统误差,即E(Xi)=θ,i=1,2,…,k,试求:a1,a2,…,ak应取何值,使用
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:
设z=f(x2+y2+z2,xyz)且f一阶连续可偏导,则=________.
设为发散的正项级数,令Sn=a1+a2+…+an(n=1,2,…).证明:收敛.
设f(x)二阶连续可导,且f(0)=f’(0)=0,f"(0)≠0,设u(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求
设f(x)为单调可微函数,g(x)与f(x)互为反函数,且f(2)=4,f’(2)=,f’(4)=6,则g’(4)等于().
随机试题
根据散热原理,如何给高热病人降低体温?
同质的事物也是有区别的,把它们区别开来的依据是【】
含氯消毒剂作用的最佳pH为
寒热往来、心烦喜呕的症状见于
我国的经济与社会发展规划具有()、宏观性、战略性和政策性。
已知低碳钢、松木、混凝土抗压强度分别为415MPa、341MPa、29.4MPa,它们的表观密度分别为7860kg/m3、500kg/m3、2400kg/m3,则它们的比强度之间的关系为()。
背景:某工程公司中标承包一城市道路施工项目,工程建设工期很紧。为抓紧时间,该公司很快组成项目经理部,项目经理部进行了临建,对施工现场实施封闭。项目部拿到设计院提供的设计施工图决定立即开始施工,监理工程师尚未到场。开工后项目部组织人员编制了施工组织设计,其
消费者的参照群体主要包括()。
近年来,中国不断探索对外开放的新路径和新模式,下列关于这方面探索的说法,错误的是()。
对长度为n的线性表作快速排序,在最坏情况下,比较次数为
最新回复
(
0
)