设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex (x>0).

admin2015-07-24  21

问题 设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex (x>0).

选项

答案令φ(x)=e-xf(x),则φ(x)在[0,+∞)内可导, 又φ(0)=1,φ’(x)=e-x (x)-f(x)]<0(x>0),所以当x>0时,φ(x)<φ(0)=1,所以有f(x)<ex (x>0).

解析
转载请注明原文地址:https://jikaoti.com/ti/QHPRFFFM
0

最新回复(0)