首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn-r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn-r+1ηn-r+1,其中k1+…+kn-r+1=1。
admin
2018-04-18
54
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n-r+1
是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k
1
η
1
+…+k
n-r+1
η
n-r+1
,其中k
1
+…+k
n-r+1
=1。
选项
答案
设X为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n-r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
一η
1
,ξ
2
=η
3
一η
1
,η
1
,…,ξ
n-r
=η
n-r+1
一η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n-r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n-r
使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n-r
ξ
n-r
=0, 即 l
1
(η
2
—η
1
)+l
2
(η
3
一η
1
)+…+l
n-r
(η
n-r+1
一η
1
)=0,也即 一(l
1
+l
2
+…+l
n-r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n-r
η
n-r+1
=0。 由η
1
,η
2
,…,η
n-r+1
线性无关知一(l
1
+l
2
+…+l
n-r
)=l
1
=l
2
=…=l
n-r
=0, 这与l
1
,l
2
,…,l
n-r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n-r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以X一η
1
为Ax=0的解,因此x一η
1
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,设 x一η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n-r+1
ξ
n-r
=k
2
(η
2
一η
1
)+k
3
(η
3
一η
1
)+…+k
n-r+1
(η
n-r+1
一η
1
), 则x=η
1
(1一k
2
一k
3
一…一k
n-r+1
)+k
2
η
2
+k
3
η
3
+…+k
n-r+1
η
n-r+1
, 令k
1
=1一k
2
一k
3
…一k
n-r+1
,则k
1
+k
2
+k
3
+…+k
n-r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n-r+1
η
n-r+1
恒成立。
解析
转载请注明原文地址:https://jikaoti.com/ti/PzdRFFFM
0
考研数学二
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=B的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
[*]
A、A(B+E)=BB、(B+E)A=BC、B(A-E)=AD、(E-A)B=AB
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.(I)写出f(x)在[-2,0]上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导.
设3阶方阵Aα(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2都是3维列向量,且|A|=3,|B|=4,则|5A-2B|=________.
设函数f(x)在(-∞,+∞)内有定义,xo≠0是函数f(x)的极大值点,则().
(I)利用行列式性质,有[*]
证明显然,f(x)是一个关于x的二次多项式,在闭区间[0,1]上连续,在开区间(0,1)内可导,且[*]故由罗尔定理知,存在ξ∈(0,1),使f’(ξ)=0.
设f(u,v)具有二阶连续偏导数,且满足
设函数问a为何值时,f(x)在x=0处连续;a为何值时,x=0是f(x)的可去区间断点?
随机试题
正常前列腺液中的前列腺颗粒细胞为
以下合同中,属于《联合国国际货物销售同公约》调整的国际货物买卖合同的是:
设某种理想气体的麦克斯韦分子速率分布函数为f(v),则速率在v1~v2区间内分子的平均速率表达式为()。
堆石坝坝料压实质量检查,应采用碾压参数和干密度(孔隙率)等参数控制,以控制()为主。
(2010年考试真题)具有商业实质的非货币性资产交换按照公允价值计量的,假定不考虑补价和相关税费等因素,应当将换入资产的公允价值和换出资产的账面价值之间的差额计入当期损益。()
网络的()称为拓扑结构。
对于学生伤害事故的责任,其确定的原则是()。
中国已成为世界第二大经济体,人们的物质生活得到了极大的改善,是否因此就可以认为“提倡艰苦朴素”这一口号已经过时了?我们今天还要不要发挥艰苦奋斗的光荣传统呢?________。填入画横线部分最恰当的一句是:
辛亥革命失败的主观原因是
(1)打开testdb数据库,根据表dept和表sell并使用查询设计器设计一个名称为three的查询,按“年度”分部门(按年度和部门分组)统计“月平均销售”(通过销售额计算)、“月平均工资”(通过工资额计算)和“月平均利润”(通过“月平均销售-月平均工
最新回复
(
0
)