(10年)求函数u=χy+2yz在约束条件χ2+y2+z2=10下的最大值和最小值.

admin2021-01-25  40

问题 (10年)求函数u=χy+2yz在约束条件χ2+y2+z2=10下的最大值和最小值.

选项

答案设F(χ,y,z,λ)=χy+2yz+λ(χ2+y2+z2-10). 令[*] 得可能的最值点 A(1,[*],2),B(-1,[*],-2) C(1,-[*],2),D(-1,-[*],-2) E([*]),F([*]) 因为在A,D两点处u=5[*];在B,C两点处u=-5[*];在E,F两点处u=0,所以umax=5[*],umin=-5[*].

解析
转载请注明原文地址:https://jikaoti.com/ti/PcaRFFFM
0

最新回复(0)