,αTβ=aibi≠0,求A的全部特征值,并证明A可以对角化.

admin2019-05-08  82

问题 ,αTβ=aibi≠0,求A的全部特征值,并证明A可以对角化.

选项

答案令αTβ=k,则A2=kA,设AX=λX,则A2X=λ2X=kλX,即λ(λ一k)X=0,因为X≠0,所以矩阵A的特征值为λ=0或λ=k,由λ1+…+λn=tr(A)且tr(A)=k得λ1=…=λn一1=0,λn=k,因为r(A)=1,所以方程组(0E一A)X=0的基础解系含有n一1个线性无关的解向量,即λ=0有n一1个线性无关的特征向量,故A可以对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/HvnRFFFM
0

相关试题推荐
最新回复(0)