首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. 求正交变换x=Qy将f化为标准形.
已知A=,二次型f(x1,x2,x3)=xT(ATA)x的秩为2. 求正交变换x=Qy将f化为标准形.
admin
2019-07-16
76
问题
已知A=
,二次型f(x
1
,x
2
,x
3
)=x
T
(A
T
A)x的秩为2.
求正交变换x=Qy将f化为标准形.
选项
答案
由于a=-1,所以A
T
A [*] 矩阵A
T
A的特征多项式为 |λE-A
T
A| [*] =(λ-2)(λ
2
-6λ)=λ(λ-2)(λ-6), 于是得A
T
A的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 对于λ
1
=2,由求方程组(2E-A
T
A)x=0的一个非零解, 可得属于λ
1
=2的一个单位特征向量[*](1,-1,0)
T
; 对于λ
2
=6,由求方程组(6E-A
T
A)x=0的一个非零解, 可得属于λ
2
=6的一个单位特征向量[*](1,1,2)
T
; 对于λ
3
=0,由求方程组(A
T
A)X=0的一个非零解, 可得属于λ
3
=0的一个单位特征向量[*](1,1,-1)
T
. 令矩阵 [*] 则f在正交变换X=Qy下的标准形为f=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/PEnRFFFM
0
考研数学三
相关试题推荐
设齐次线性方程组其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:为参数σ2的无偏估计量.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
求下列极限:
(1987年)求
(2012年)已知函数f(x)满足方程f"(x)+f’(x)一2f(x)=0及f"(x)+f(x)=2ex。(I)求f(x)的表达式;(Ⅱ)求曲线y=f(x2)∫0xf(一t2)dt的拐点。
随机试题
试述魏晋南北朝时期佛教的传播及南北特点。
如果企业速动比率很小,下列结论正确的是()。
生物型工作设计方法关注的是()。
固定资产的更新改造等后续支出,满足固定资产确认条件的,应当计入固定资产成本,如有被替换的部分,应同时将被替换部分的账面价值从该固定资产原账面价值中扣除;不满足固定资产确认条件的固定资产修理费用等,应当在发生时计入当期损益。()
以下不属于小学教育特点的是()。
左边给定的是纸盒的外表面,下面哪一项能由它折叠而成?
对于图5-36所示的系统(a)中,仅当部件1、部件2和部件3全部正常时系统才能正常工作,图中数字为各部分的可靠性,整个系统的可靠性近似为(1)。在系统(b)中,如果将部件2和部件3改成由两个器件构成,只要器件a和b中有一个正常,就能使部件2正常工作,只要器
【26】【32】
Onedayadentistwas【B1】hismorningwork.Suddenlyamanran【B2】Hisfacewasredandhecould【B3】say:"Quick!Quick!"【B4】dentis
PresidentBushonThursdaydedicatedthenationalChristmastreetothosewhodiedonSept.11andtoGiswhohavediedinthel
最新回复
(
0
)