首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫0nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-∫0nf(x)dx.证明:{an}收敛且0≤an≤f(1).
admin
2018-05-21
28
问题
设f(x)在[1,+∞)内可导,f’(x)<0且
f(x)=a>0,令a
n
=
f(k)-∫
0
n
f(x)dx.证明:{a
n
}收敛且0≤
a
n
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
-a
n
=f(n+1)-∫
n
n+1
f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]),所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)-f(x)]dx≥0(k=1,2?…,n-1)且[*]f(x)=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]a
n
存在. 由a
n
=f(1)+[f(2)-∫
1
2
f(x)dx]+…+[f(n)-∫
n-1
n
f(x)dx], 而f(k)-∫
k-1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]a
n
≤f(1).
解析
转载请注明原文地址:https://jikaoti.com/ti/OMVRFFFM
0
考研数学一
相关试题推荐
设z=。
设f(x)在[a,b]上二阶可导,f(a)=f(b)=0.试证明至少存在一点ξ∈(a,b),使
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫—aa|x一t|f(t)dt.(1)证明F’(x)单调增加.(2)当x取何值时,F(x)取最小值.(3)当F(x)的最小值为f(a)一a2一1时,求函数f(x).
已知曲面z=4一x2一y2上点P处的切平面平行于平面2x+2y+z一1=0,则点P的坐标是()
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是(一1,1,0,2)T+k(1,一1,2,0)T.(Ⅰ)β能否由α1,α2,α3线性表示?(Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设,B=A一1,则B的伴随矩阵B*的所有元素之和等于________.
设二次型f(x1,x2,x3)=xTAx=x12+ax22+3x32一4x1x2—8x1x3—4x2x3,其中一2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,求k的取值范围.
已知线性方程组(Ⅰ)及线性方程组(Ⅱ)的基础解系ξ1=[-3,7,2,0]T,ξ2=[-1,-2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
现有k个人在某大楼的一层进入电梯,该楼共n+1层.电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯).现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值.
随机试题
下列关于一般语汇总体特点的表述中,正确的一项是()
股票价格的特殊性质包括()
简述阶级的起源和实质。
输尿管自上而下第一处狭窄位于
既能清肝泻火,又可明目退翳的药物是
护理重度营养不良患儿应特别注意观察可能发生下列哪种情况( )。
咨询工程师在项目前期准备阶段的工作,正确的先后顺序是()。①研究项目的相关资料②编写咨询项目工作大纲③接受委托④成立项目团队
目前,我国煤矿安全监察实行()、分级监察的管理体制。
()对于汽车相当于()对于人体
在考生文件火下,存在一个数据库文件“sampl.accdb”,里面已经设计好表对象“tStud”。请按照以下要求,完成对表的修改。(1)将“年龄”字段的字段大小改为“整型”;将“简历”字段的说明设置为“自上大学起的简历信息”;将“备注”字段删除。
最新回复
(
0
)