首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
Rock-paper-scissors is a game played all around the world. As kids, we have relied on it to settle disagreements with friends—fr
Rock-paper-scissors is a game played all around the world. As kids, we have relied on it to settle disagreements with friends—fr
admin
2016-11-20
43
问题
Rock-paper-scissors is a game played all around the world. As kids, we have relied on it to settle disagreements with friends—from which channel to watch to who gets to eat the last ice cream—all because we think the results are completely
random
.
But are they?
Wang Zhijian, PhD, a professor at Zhejiang University, believes that there is a regulation behind this simple game. So, he gathered 360 students, divided them into groups of six and had each group play 300 rounds of rock-paper-scissors, reported USA Today.
After the first results, Wang thought he was wrong, because players chose each of the three moves about one-third of the time, suggesting that the game is random after all. However, Wang later noticed a surprising regulation of behavior in the data.
When players won a round, they usually stuck to the same choice. But when they lost, they tended to change to a more powerful move. For example, if Player A had just thrown down scissors to beat Player B’ s paper, Player A was more likely to throw down scissors again while Player B was likely to choose rock, since rock beats scissors.
According to Wang, this might be a function that is called "conditional response". So, for the next step of his study, as he told BBC, Wang plans to do some research about how human brains make quick decisions when competing.
Now that you’ ve learned how to predict the moves of your opponent, you’ 11 have an advantage next time you play rock-paper-scissors with your friends. But there is one problem: make sure they haven’ t read about Wang’ s study, or your advantage will disappear.
What’s Wang’s discovery of the surprising regulation of behavior?
选项
A、300 rounds of rock-paper-scissors can be done at once.
B、The game rock-paper-scissors is random after all.
C、The game is based on "conditional response".
D、The response of players doesn’t seem random.
答案
D
解析
细节题。根据第三段第一句“Wang Zhijian,PhD,a professor at Zhejiang University,believes that there is a regulation behind this simple game.”可知参加游戏者的反应并不是随机的。故选D项。
转载请注明原文地址:https://jikaoti.com/ti/NZb4FFFM
本试题收录于:
中学英语题库教师公开招聘分类
0
中学英语
教师公开招聘
相关试题推荐
《义务教育数学课程标准(2011年版)》在课程总目标中提出,通过义务教育阶段数学的学习,学生能了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新精神和科学态度,其中,科学态度主要包括__________(写出所有正
某老师在课堂上给学生们讲解这样一道试题,设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,2)到这个椭圆上的最远距离是,求这个椭圆的方程。教师板书过程如下:设椭圆上的点(x0,y0)到点P的距离为d则d2=x02+(y0一2)2分
某老师在课堂上给学生们讲解这样一道试题,设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,2)到这个椭圆上的最远距离是,求这个椭圆的方程。教师板书过程如下:设椭圆上的点(x0,y0)到点P的距离为d则d2=x02+(y0一2)2你
数学教师专业技能的特色:数学性、教育性和()。
下列是普通高中课程标准实验教科书必修《数学》第四册(人教版)关于“简单的三角恒等变换”的部分教学内容,请阅读并据此回答问题。例2.求证:(1)sinαcosβ=[sin(α+β)+sin(α-β)];(2)sinθ+sinφ=2sin证明:(1)因为
教学内容:《义务教育教科书九年级(上)》(人教版)“24.2.2直线和圆的位置关系”片段24.2.2直线和圆的位置关系如图,在纸上画一条直线L,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,它与直线L的公共点的个数吗?发现:直线与圆有
案例:《7.5.2一次函数的简单应用》教学。以小聪、小慧去旅游的例子为线索,让学生体会一次函数的图象与二元一次方程组的解之间的关系,然后利用图象的交点让学生明白利用图象的简洁性,同时附带介绍近似解等概念,但在教学中我们发现:当我们需要将问题中的两
案例:下面是“图案设计”教学片段的描述,阅读并回答问题。【片段一】教师利用电脑和投影演示一个三角形分别经过平移、旋转和轴对称变换后得到其对应图形的变换过程,学生观察图形,回忆三种图形变换的基本特征,并归纳出三种变换的共性。【片段二】观察下面的图形,
Themajorityofpeopleinthetownstrongly______theplantobuildaplaygroundforchildren.
Nowadayssomehospitalsrefertopatients______name,notCasenumber.
随机试题
患者女性,19岁,被诊断为单纯性甲状腺肿,在实验室检查中哪项检查结果可能是合理的
根据有关规定,实施义务教育的普通学校应当接收具有接受普通教育能力的残疾适龄儿童、少年()。
当一个杯子当中装了水,人们会说它是水,而当一个杯子当中装了油,人们会说它是油,只有当空杯子放在那里的时候。人们才会说它是杯子。请问对此你怎么看?
有四对夫妻排成前后两排照相,每排四人,使得每对夫妻都不对号的不同排法共有()种.
关于报表功能的叙述中,不正确的是()。
Faces,likefingerprints,areunique.Didyoueverwonderhowitispossibleforustorecognizepeople?Evenaskilledwriterp
ThenumberofpeoplewhosurftheInternetviamobiledevicesinChinahasforthefirsttime【C1】______thenumberusingcomputer
Spaceisadangerousplace,notonlybecauseofmeteors(流星)butalsobecauseofraysfromthesunandotherstars.Theatmosphe
Don’tLetDepressionRuinaGoodThingFeelingdown?Gottheblues?You’renotalone.Everyonegets.sad(yes,everyoneyou’
Wouldn’titbegreatifyoucouldjustlookupattheskyandreadtheweatherforecastrightaway?Well,youcan.Theforecast
最新回复
(
0
)