首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为n—2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
设n阶矩阵A的秩为n—2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
admin
2019-05-19
28
问题
设n阶矩阵A的秩为n—2,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为________。
选项
答案
α
1
+k
1
(α
2
—α
1
)+k
2
(α
3
—α
1
),k
1
,k
2
为任意常数
解析
α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个线性无关的解,则α
2
—α
1
,α
3
—α
1
是Ax=0的两个非零解,且它们线性无关。又n—r(A)=2,故α
2
—α
1
,α
3
—α
1
是Ax=0的基础解系,所以Ax=b的通解为α
1
+k
1
(α
2
—α
1
)+k
2
(α
3
—α
1
),k
1
,k
2
为任意常数。
转载请注明原文地址:https://jikaoti.com/ti/LgnRFFFM
0
考研数学三
相关试题推荐
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
设随机变量(X,Y)在区域D={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令(1)求(U,V)的联合分布;(2)求ρUV.
设f(x)的一个原凼数为F(x),且F(x)为方程xy’+y=ex的满足y(x)=1的解.(1)求F(x)关于x的幂级数;(2)求的和.
设X1,X2,…,X10是来自总体N(μ,1)的简单随机样本,记(Ⅰ)求Z=服从何种分布,并求P{Z>0};(Ⅱ)求D(S12+S22).
设A是n阶矩阵,A的第i行第j列元素aij=i.j(i,j=1,2,…,n).B是n阶矩阵,B的第i行第j列元素bij=i(i=1,2,…,n).证明:A相似于B.
设向量组α1,α2,α4为方程组AX=0的一个基础解系,下列向量组中也是方程组AX=0的基础解系的是().
曲线ex+y一sin(xy)=e在点(0,1)处的切线方程为___________.
设ξ,η是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η},试写出二维随机变量(X,Y)的分布律及边缘分布律,并求P{ξ=η}.
(99年)在天平上重复称量一重为a的物品.假设各次称量结果相互独立且服从正态分布N(a,0.22).若以表示,n次称量结果的算术平均值,则为使P{|-a|<0.1}≥0.95n的最小值应不小于自然数_______.
已知一批零件的长度X(单位为cm)服从正态总体N(μ,1),从中随机抽取16个零件,测得其长度的平均值为40cm,则μ的置信度为0.95的置信区间是(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95)().
随机试题
为了弥补消费者固定样本持续调查的不足,可以对零售商店同时进行销售量调查,这样有助于取得
肺癌的胸外表现常见的是
A.大便隐血持续阳性B.血清胃泌素增加C.血清胃泌素正常D.血清胃泌素降低慢性浅表性胃炎
清气化痰丸的组成药物中不含有
6岁男孩,摔倒时左手撑地。即出现左肘部疼痛、冲胀,桡动脉搏动减弱该患者伤后有垂腕表现,可能是
水利工程建设监理的监理工程师岗位证书由()颁发。
已知ABCD—A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.若点C到平面AB1D1的距离为,求正四棱柱ABCD—A1B1C1D1的高.
山姆、汤姆、宁吉士是一起抢劫案的三个嫌疑犯,罪犯是他们中的一个或一伙。已知如下:罪犯带着赃物是坐汽车逃走的;不伙同山姆,宁吉士不会作案;汤姆不会开车。根据以上条件可知( )。
下列机关中,享有对直辖市中级人民法院院长任免权的是()(2012年非法学综合课单选第22题)
拘役
最新回复
(
0
)