首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
admin
2019-07-12
43
问题
设n(n≥3)阶矩阵A=
,如伴随矩阵A
*
的秩r(A
*
)=1,则a为
选项
A、
B、
C、
D、
答案
B
解析
由伴随矩阵秩的公式r(A
*
)=
,知r(A)=n-1,那么|A|=0且有n-1阶子式不为0.
如a=1,显然|A|的二阶子式全为0,故(A)不入选.而a≠1时,由题设有
必有(n-1)a+1=0,故应选(B).
转载请注明原文地址:https://jikaoti.com/ti/LWnRFFFM
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT;(Ⅱ)若α,β正交且均为单位向量,证明二次型f在正交变化下的标准形为2y12+y22。
(2013年)设X1,X2,X3是随机变量,且X1~N(0,1),X2~N(0,22),X3~N(5,32),pi=P{-2≤Xi≤2}(i=1,2,3),则()
(2016年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则()
设y=y(x)是由方程y2+xy+x2+x=0所确定的满足y(一1)=1的隐函数,则=
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:
若事件A1,A2,A3两两独立,则下列结论成立的是().
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足______.
设f(x)在x=0处连续,且则曲线y=f(x)在(2,f(2))处的切线方程为______.
设f(x)具有连续导数,且F(x)=∫0x(x2一t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=___________.
确定下列无穷小量当x→0时关于x的阶数:f(x)=ex一1一x一xsinx;
随机试题
治疗糖尿病酮症酸中毒时最应注意的电解质紊乱是
下列正,反定型结果正确的是
关于投融资项目和投融资服务项目的相对性,说法正确的有()。
承包单位只有收到项目监理部签署的《工程变更单》后,方可实施工程变更。
关于感官检验,下列说法正确的有()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
诚然,中国可以向其他国家输出治霾的技术经验,甚至______扩大中国的环保产业,可如果这些经验在国内都没有扎实落地,就不能______外国人不了解中国的治霾努力了。依次填入画横线部分最恰当的一项是()。
新民住宅小区扩建后,新搬入的住户纷纷向房产承销公司投诉附近机场噪声太大令人难以忍受。然而,老住户们并没有声援说他们同样感到噪声巨大。尽管房产承销公司宣称不会置住户的健康于不顾,但还是决定对投诉不准备采取措施。他们认为机场的噪声并不大,因为老住户并没有投诉。
讨论函数的连续性.
誰かがいるでしょう、電気がついて________から。
最新回复
(
0
)