首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
admin
2018-06-15
30
问题
设A是5×4矩阵,A=(α
1
,α
2
,α
3
,α
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
-2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n-r(A)=2,故必有r(A)=2.所以可排除(D).
由②知,α
2
,α
4
线性相关.故应排除(B).
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除(A).
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(-2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选(C).
转载请注明原文地址:https://jikaoti.com/ti/LK2RFFFM
0
考研数学一
相关试题推荐
有两名选手比赛射击,轮流对同一个目标进行射击,甲命中目标的概率为α,乙命中目标的概率为β甲先射,谁先命中谁得胜.问甲、乙两人获胜的概率各为多少?
设矩阵A=,且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为a=[-1,-1,1]T,求a,b,c及λ0的值.
已知α=[1,k,1]T是A-1的特征向量,其中A=,求k及a所对应的特征值.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2-α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为_______
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是_______
计算曲面积分(x3+az2)dydz+(y3+ax2)dzdx+(z3+ay2)dxdy,其中∑为上半球面的上侧.
求y=∫0x(1一t)arctantdt的极值.
已知抛物线y=ax2+bx+c经过点P(1,2),且在该点与圆=相切,有相同的曲率半径和凹凸性,求常数a,b,c.
某闸门的形状与大小如右图所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
随机试题
q.m.的含义是
下列可能引起纵隔扑动的是
A.以健康人或病人作为受试对象B.实验时使用对照和双盲法C.不选择弱势人群受试对象D.实验中受试者得到专家的允许后可自由决定是否退出E.弱势人群若参加实验,需要监护人签字能体现人体实验知情同意的是()
A、安全保障权B、获得赔偿权C、自主选择权D、监督权根据《中华人民共和国消费者权益保护法》某药品零售企业出售了数量严重短缺的板蓝根颗粒剂,且拒不赔偿,此行为主要侵犯了消费者的
为了加强城市建设档案管理,充分发挥城建档案在城市规划、建设、管理中的作用,根据()制定本规定。
个人独资企业的投资人张某为筹款经商,以自有的价值20万元的设备作抵押,向甲银行贷款5万元,1个月后又以该设备作抵押,向乙银行贷款10万元,均未办理抵押物登记。如果张某到期不能还款,该设备拍卖所得为12万元,下列说法错误的有()。
下列各项中,不属于会计专业职务的是()。
下列利率决定理论中,着重强调储蓄与投资对利率决定作用的是()。
为了抗日民族统一战线的坚持、扩大和巩固,中国共产党制定了“发展进步势力,争取中间势力,孤立顽固势力”的策略总方针。同顽固派作斗争必须坚持
目前,宽带接入技术主要包括:()技术、()技术、光纤同轴电缆混合网HFC技术、光纤接入技术与无线接入技术。
最新回复
(
0
)