(2001年试题,一)设矩阵A满足A2+A一4E=0,其中E为单位矩阵,则(A—E)-1=_____________.

admin2014-05-20  77

问题 (2001年试题,一)设矩阵A满足A2+A一4E=0,其中E为单位矩阵,则(A—E)-1=_____________.

选项

答案由题设,只要将原表达式A2+A一4E=0改写成形如(A—E)(aA+bE)=E的形式,就可得出(A一E)-1=aA+bE,其中a,b为待定常数,按待定系数法的思想,将(A—E)(aA+bE)=层展开后,得aA2+bA一bA一bE=E,即aA2+(b—a)A一(b+1)E=0,与原表达式比较,得出[*],所以[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/KtcRFFFM
0

最新回复(0)