首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
admin
2019-11-25
51
问题
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥
|f(b)-f(a)|·
选项
答案
由泰勒公式得 f([*])=f(a)+f’(a)([*]-a)+[*]([*]-a)
2
,ξ
1
∈(a,[*]), f([*])=f(b)+f’(b)([*]-b)+[*]([*]-b)
2
,ξ
2
∈([*],b), 即f([*])=f(a)+[*]f”(ξ
1
),f([*])=f(b)+[*]f”(ξ
2
), 两式相减得f(b)-f(a)=[*][f”(ξ
1
)-f”(ξ
2
)], 取绝对值得|f(b)-f(a)|≤[*][ |f”(ξ
1
)|+|f”(ξ
2
)|]. (1)当f”(ξ
1
)|≥|f”(ξ
2
)|时,取ξ=ξ
1
,则有|f”(ξ)|≥[*]|f(b)-f(a)|; (2)当|f”(ξ
1
)|<|f”(ξ
2
)|时,取ξ=ξ
2
,则有|f”(ξ)|≥[*]|f(b)-f(a)|.
解析
转载请注明原文地址:https://jikaoti.com/ti/KXiRFFFM
0
考研数学三
相关试题推荐
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
设n维向量αs可由α1,α2,…,αs-1唯一线性表示,其表出式为αs=α1+2α2+3α3+…+(s一1)αs-1(1)证明齐次线性方程组α1x1+α2x2+…+αi-1xi-1+αi+1xi+1+…+αsxs=0(
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设fn(x)=x3+anx—1,其中n是正整数,a>1.(1)证明方程fn(x)=0有唯一正根rn;(2)若Sn=r1+r2+…+rn,证明
随机试题
试述海外投资企业经营当地化的主要内容及作用。
男性患者,15岁,4个月前双下肢水肿,当时尿常规蛋白阳性,24小时尿蛋白定量4.8g,血浆白蛋白19g/L,肾穿刺病理诊断为肾小球微小病变,经糖皮质激素治疗后,现尿常规蛋白转为阴性,血浆白蛋白34g/L,但患者出现间断性四肢抽搐,最可能的原因是
忠儿,日龄3天。上腭中线和牙龈部有黄白色斑点,即“马牙”,护士应给予的护理方法是
按照规定,采取协议出让的土地使用权出让金()。
材料相同的悬臂梁Ⅰ、Ⅱ,所受载荷及截面尺寸如图5-94所示。关于它们的最大挠度正确的结论是()。
下列不属于工程概预算编制的方法和程序中的环节的是()。
下列公式正确的有()。
网上作战是网络时代的新型侦查模式,侦查人员利用计算机、计算机网络及专门软件等辅助工具来发现犯罪、查清案件事实、收集案件证据与查缉嫌疑人。如果没有坚实的侦查基础工作,则相关犯罪信息不能被及时收集并录入专用的计算机网络,网上摸排与网上追逃也势必成为无本之木、无
影响儿童攻击性行为的因素有()。
Themajorityofpeople,aboutnineoutoften,areright-handed.Notuntilrecently,peoplewhowereleft-handedwereconsidered
最新回复
(
0
)