设f(x)连续,x∈[0,a]且∫0af(x)dx=,求∫0adx∫xaf(x)f(y)dy.

admin2022-03-23  26

问题 设f(x)连续,x∈[0,a]且∫0af(x)dx=,求∫0adx∫xaf(x)f(y)dy.

选项

答案方法一: ∫0adx∫xaf(x)f(y)dy=∫0af(x)dx∫xaf(y)dy=∫0af(y)dy∫0yf(x)dx =∫0af(x)dx∫0xf(y)dy=[*][∫0af(x)dx∫xaf(y)dy+∫0af(x)dx∫0xf(y)dy] =[*]∫0af(x)dx∫0af(y)dy=[*][∫0af(x)dx]2=[*]([*])2=1 方法二: 令F(x)=∫0af(y)dy,就有F’(x)=-f(x),于是 ∫0adx∫xaf(x)f(y)dy=∫0af(x)dx∫xaf(y)dy=-∫0aF(x)d[F(x)]=[*]|0a=1

解析
转载请注明原文地址:https://jikaoti.com/ti/KXfRFFFM
0

最新回复(0)