首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求V=y(x-x)i+x2j+(y2+xz)忌沿有向曲面∑对坐标的曲面积分,其中∑是边长为a的正立方体的外表面(见图1—6—9).
求V=y(x-x)i+x2j+(y2+xz)忌沿有向曲面∑对坐标的曲面积分,其中∑是边长为a的正立方体的外表面(见图1—6—9).
admin
2020-05-02
17
问题
求V=y(x-x)i+x
2
j+(y
2
+xz)忌沿有向曲面∑对坐标的曲面积分,其中∑是边长为a的正立方体的外表面(见图1—6—9).
选项
答案
方法一 如图2-6-77所示,积分区域∑由六个平面∑
1
,∑
2
,…,∑
6
组成,其中∑
1
和∑
2
在xOy平面及zOx平面上的投影区域面积为0,∑
3
和∑
4
在xOy面及yOz面上的投影面积为0,∑
5
和∑
6
在yOz平面及zOx平面上投影区域面积为0,故 [*] 所以 [*] 方法二 由高斯公式,有 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/II9RFFFM
0
考研数学一
相关试题推荐
已知矩阵A=有两个线性无关的特征向量,则a=______.
设f(x)可导,-∞<x<+∞,y>0.
假设随机变量X的密度函数f(x)=ce-λ|x|(λ>0,一∞<x<+∞),Y=|X|.(I)求常数c及EX,DX;(Ⅱ)问X与Y是否相关?为什么?(Ⅲ)问X与Y是否独立?为什么?
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PtAP为正定矩阵.
设f(x)二阶连续可导,且f’’(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<0<1).证明:.
设有微分方程y’一2y=φ(x),其中,试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1),(1,+∞)内都满足所给方程,且满足条件y(0)=0.
求函数μ=的梯度方向的方向导数.
空间曲线的参数方程为___________。
设f(x)=则其以2π为周期的傅里叶级数在点x=π处收敛于___________。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
随机试题
开放式基金连续发生巨额赎回时,已经接受的赎回申请可以延缓支付赎回款项,但延缓期限不得超过()个工作日。
A.TSHB.rT3C.TT3D.FT3(2011年)对诊断亚临床甲状腺功能异常,最有意义的激素测定是
参与脂肪酸氧化的维生素有
根据面神经在颅外的行程及其与腮腺的关系,可显露面神经主干的参考标志是
小企业的年度财务会计报告包括资产负债表、利润表和会计报表附注。()
复式记账法的基本理论依据是()。
下列可以减免进口税费的进口货物与进境物品中,不属于法定减免税进口的货物是:
要限制宏操作的操作范围,可以在创建宏时定义()。
FromMondayuntilFridaymostpeoplearebusyworkingorstudying,butintheeveningsandonweekendstheyarefreeandenjoyt
A、Itshowsthecomponentsofeachcigarette.B、Itwarnsusthatsmokingisdangeroustohealth.C、Ittellspeoplethesideeffec
最新回复
(
0
)