首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
admin
2018-09-25
19
问题
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为
,且相互独立,若z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路程,求EZ.
选项
答案
设按从左到右的顺序将女嘉宾编号为1,2,…,n. X为“已经握手的女嘉宾的编号”,Y表示“将要去握手的女嘉宾的编号”,则 [*] Z=|i-j|a. 于是 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/I92RFFFM
0
考研数学一
相关试题推荐
作自变量与因变量变换:u=x+y,v=x-y,w=xy-z,变换方程为w关于u,v的偏导数满足的方程,其中z对x,y有连续的二阶偏导数.
已知函数f(x,y,z)=x3y2z及方程x+y+z-3+e-3=e-(x+y+z),(*)(Ⅰ)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求;(Ⅱ)如果z=z(x,y)是由方程(*
设x=x(y,z),y=y(z,x),z=z(x,y)都是由方程F(x,y,z)=0所确定的隐函数,并且F(x,y,z)满足隐函数存在定理的条件,则=____________.
甲、乙二人轮流投篮,游戏规则规定为甲先开始,且甲每轮只投一次,而乙每轮连续投两次,先投中者为胜.设甲、乙每次投篮的命中率分别是p与0.5,则p=__________时,甲、乙胜负概率相同.
在一个盒子中放有10个乒乓球,其中8个是新球,2个是用过的球.在第一次比赛时,从该盒子中任取2个乒乓球,比赛后仍放回盒子中.在第二次比赛时从这个盒子中任取3个乒乓球,则第二次取出的都是新球的概率为___________.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设连续型随机变量X的分布函数为其中a>0,Ф(x),φ(x)分别是标准正态分布的分布函数与概率密度,令Y=X2,求Y的密度函数.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为0.5,则μ=__________.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
已知总体X服从参数为p(0<p<1)的几何分布:P{X=x}=(1一p)x-1p(x=1,2,…),X1,…,Xn是来自总体X的简单随机样本,则未知参数p的矩估计量为____________;最大似然估计量为____________.
随机试题
下列激素中哪一种不是腺垂体分泌的【】
患者可能存在哪种心力衰竭其导致心力衰竭的病因可能是
A、大肠杆菌B、胰岛素分泌不足C、幽门螺杆菌D、消化道痉挛E、白色念珠菌导致消化性溃疡的主要因素之一是
根据环境保护税的规定,应税污染物排放地是指()。
项目的可行性研究和贷款项目评估的发起主体不同,下列说法中正确的是()。
下列说法正确的是( )。
《资政新篇》的开篇指出“事有常变,理有穷通,故事有今不可行而可预定者,为后之福;有今可行而不可永定者,为后之祸,其理在于审时度势与本末强弱耳。然本末之强弱适均,视乎时势之变通为律。则自今而至后,自小而至大,自省而至国,自国而至万国,亦无不可行矣。其要在于因
打开考生文件央下的演示义稿yswg.ppt,按照下列要求完成对此文稿的修饰并保存。(1)第一张幻灯片的主标题文字的字体设置为“黑体”,字号设置为57磅,加粗,加下划线。第二张幻灯片图片的动画设置为“进入”、“切入”、“自底部”,文本动画
WhichofthefollowingitalicizedphrasesindicatesCAUSE?
A、ToJean,friendshipismoreimportantthanlife.B、ToJean,friendshipismoreimportantthanlove.C、ToJean,friendshipism
最新回复
(
0
)