设连续函数f(x)满足f(x)=∫02xf(t/2)dt+ex,则f(x)=________.

admin2021-10-18  62

问题 设连续函数f(x)满足f(x)=∫02xf(t/2)dt+ex,则f(x)=________.

选项

答案2e2x-ex

解析02xf(t/2)dt-2∫0xf(t)dt,则f(x)=∫02xf(t/2)dt+ex可化为f(x)=2∫0xf(t)dt+ex,两边求导得f’(x)-2f(x)=ex,解得f(x)=[ex·e∫-2dxdx+C]e-∫-2dx=(-e-x+C)e2x-ex,因为f(0)=1,所以f(0)=C-1=1,C=2,于是f(x)=2e2x-ex
转载请注明原文地址:https://jikaoti.com/ti/GGlRFFFM
0

最新回复(0)