首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
已知列向量组α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β2=α3+tα4,β4=α4+tα1,讨论t满足什么条件时,β1,β2,β3,β4也是方程组Ax=0的一个基础解系.
admin
2021-07-27
38
问题
已知列向量组α
1
,α
2
,α
3
,α
4
是线性方程组Ax=0的一个基础解系,若β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
2
=α
3
+tα
4
,β
4
=α
4
+tα
1
,讨论t满足什么条件时,β
1
,β
2
,β
3
,β
4
也是方程组Ax=0的一个基础解系.
选项
答案
由线性相关性的定义式入手,设存在一组常数k
1
,k
2
,k
3
,k
4
,使得k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
α
4
=0,将β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
==α
3
+tα
4
,β
4
=α
4
+tα
1
代入得(k
1
+tk
4
)α
1
+(k
2
+tk
1
)α
2
+(k
3
+tk
2
)α
3
+(k
4
+tk
3
)α
4
=0,由于α
1
,α
2
,α
3
,α
4
线性无关,从而有[*]方程组仅有零解。当且仅当[*],即t≠±1时,β
1
,β
2
,β
3
,β
4
是方程组的基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/FOlRFFFM
0
考研数学二
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
n阶矩阵A和B具有相同的特征值是A和B相似的()
证明:当x>0时,x2>(1+x)ln2(1+x).
已知向量组α1,α2,α3,α4线性无关,则向量组()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0)上的最大值与最小值.
写出下列二次型的矩阵:
过设曲线=1(0<a<4)与χ轴、y轴所围成的图形绕χ轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
求函数f(x,y)=xy--y在由抛物线y=4-x2(x≥0)与两个坐标轴所围成的平面闭区域D上的最大值和最小值。
随机试题
A、Avisittoaprison.B、Atalkwithsomemiserableslaves.C、Theinfluenceofhisfather.D、HisexperienceinthewarbetweenP
如何排除自动变速器升档、降档时滞过长故障?
下列比较低级和松散的区域经济一体化形式是
ThenumberofspeakersofEnglishinShakespeare’stimeisestimatedtohavebeenaboutfivemillion.Todayitisestimatedthat
关于磺脲类药物,下列何种说法错误
皮肤黏膜的表皮内鳞状细胞癌称为
自有固定资产和租人固定资产是按照固定资产的所有权来分类的,租入固定资产的所有权仍属于出租单位,但企业拥有其使用权和实质性的控制权。()
李先生拟在本地的一家中学建立一项永久性的奖学金.每年计划颁发奖金8000元。假设该基金能获得固定利率6%,则李先生现在最少应当存人()元。
下面谱例选自歌曲《前门情思——大碗茶》,它融入了哪种传统曲艺元素?()
设随机变量X的概率密度为对X作两次独立观察,设两次的观察值为X1,X2,令(Ⅰ)求常数a及P{X1<0,X2>1};(Ⅱ)求(Y1,Y2)的联合分布.
最新回复
(
0
)