首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
admin
2019-09-04
63
问题
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
选项
答案
z=xf(x+y)及F(x,y,z)=0两边对x求导数,得 [*] 解得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/F7nRFFFM
0
考研数学三
相关试题推荐
设3阶矩阵A与对角矩阵D=相似,证明:矩阵C=(A-λ1E)(A-λ2E)(A-λ3E)=O.
设4元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1.0)T+k2(-1,2,2,1)T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.
设行列式不具体计算D,试利用行列式的定义证明D=0.
设λ为可逆方阵A的一个特征值,证明:(1)1/λ为A-1的特征值;(2)|A|/λ为A的伴随矩阵A*的特征值.
设向量β可由向量组α1,α2,…,αn线性表示,证明:表示唯一的充分必要条件是向量组α1,α2,…,αn线性无关.
设y"前的系数为1的某二阶常系数线性非齐次微分方程的两个特解分别为y1*=(1一x+x2)ex与y2*=x2ex,则该微分方程为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程y"+p(x)y’+q(x)y=f(x)①的3个解,且则式①的通解为________.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
试讨论函数g(x)=在点x=0处的连续性.
设f(x)=f(一x),且在(0,+∞)内二阶可导,又f’(x)>0,f"(x)<0,则f(x)在(一∞,0)内的单调性和图形的凹凸性是()
随机试题
奥尔德弗认为,人们共存在3种核心的需要,即生存的需要、相互关系的需要和成长发展的需要,因而这一理论被称为ERG理论。其中相互关系的需要,即指人们对于保持重要的人际关系和获得别人认可的需求。根据上述定义,下列诗句中体现了相互关系的需要的是:
下列选项中属于著作权法规定的作品的有()。
有一颞下颌关节紊乱病患者,临床检查见中度张口受限,下颌前伸及偏向右侧时,左侧颞下颌关节区疼痛,下颌偏向左侧时无疼痛,左侧外耳道触诊髁状突后方无压痛,开口时颏点偏向左侧,考虑诊断为()
A.丙酮酸激酶B.丙酮酸羧化酶C.糖原磷酸化酶D.糖原合酶E.1,6-双磷酸果糖激酶糖原合成的关键酶是
下列选项中,()是制定物流服务项目质量计划的根本依据和出发点。
工程项目人力资源管理的特点有()。
我国公安机关的专政职能是专门用以对付敌对势力、敌对分子和严重刑事犯罪分子的。()
中国历史上第一部正式颁布的宪法是()。
有“钢琴诗人”之称的波兰钢琴家是谁?(厦门大学2010翻译硕士)
MartinlerntDeutschIchhei?eMartinKrauseundbinStudent.IchstudiereMusikundlerneDeutsch.MeineElternschreibenmir
最新回复
(
0
)