首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,—1,0,1),α4=(5,1,6,2),α5=(2,—1,4,1)。 求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示。
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,—1,0,1),α4=(5,1,6,2),α5=(2,—1,4,1)。 求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示。
admin
2019-03-23
21
问题
设有向量组α
1
=(1,3,2,0),α
2
=(7,0,14,3),α
3
=(2,—1,0,1),α
4
=(5,1,6,2),α
5
=(2,—1,4,1)。
求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示。
选项
答案
在B中选对应向量,例如α
1
,α
2
,α
3
或α
1
,α
3
,α
5
或α
1
,α
4
,α
5
均可作为极大线性无关组。不妨选α
1
,α
2
,α
3
作为极大线性无关组,将B化为标准形 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/ExLRFFFM
0
考研数学二
相关试题推荐
求证:(x∈(0,1)).
证明函数f(x)=在(0,+∞)单调下降.
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
设A,B都是n阶矩阵,并且A是可逆矩阵.证明:矩阵方程AX=B和XA=B的解相同AB=BA.
设A=(α1,α2,α3),B=(β1,β2,β3)都是3阶矩阵.规定3阶矩阵证明C可逆的充分必要条件是A,B都可逆.
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annk;f(A)的对角线元素为f(
设A是一个n阶正定矩阵,B是一个n阶实的反对称矩阵,证明A+B可逆.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为v0/3?并求到此时刻该质点所经过的路程.
设3阶方阵A按列分块为A=[α1α2α3],已知秩(A)=3,则3阶方阵B=[α1+2α2+α32α1+(2一a)α2+3α33α1+3α2]的秩=________.
随机试题
下列选项中,__________一般不作为打印机的主要性能指标。
散光眼产生的原因多半是由于
一患者,缺失,可摘局部义齿修复。义齿戴用1周后,复诊时发现右侧上颌结节颊侧黏膜反折处有小溃疡。出现黏膜溃疡的原因是()
治疗疫毒痢毒邪内闭的首选方剂是小儿暑瘟邪在气营治疗时的首选方剂是
下列β-内酰胺类抗生素中,属于碳青霉烯类的药物有()。
企业组织机构调整前管理中出现的主要问题是( )。新产品推出后,销售量不断增加,此时新产品处于产品生命周期的( )阶段。
下列关于产业结构的内容表达正确的有()。
以下不是内部劳动规则特点的是()
希腊神庙建筑的两种基本柱式是_______式和_______式。
Withterminsurancepolicy,thecustomerwill
最新回复
(
0
)