首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,a是一个实数. (1)求作可逆矩阵U,使得U-1AU是对角矩阵. (2)计算|A—E|.
已知A=,a是一个实数. (1)求作可逆矩阵U,使得U-1AU是对角矩阵. (2)计算|A—E|.
admin
2018-11-20
48
问题
已知A=
,a是一个实数.
(1)求作可逆矩阵U,使得U
-1
AU是对角矩阵.
(2)计算|A—E|.
选项
答案
(1)先求A的特征值. |λE一A|=[*]=(λ一a一1)
2
(λ一a+2) A的特征值为a+1(二重)和a—2(一重). 求属于a+1的两个线性无关的特征向量,即求[A一(a+1)E]X=0的基础解系: [*] 得[A一(a+1)E]X=0的同解方程组 x
1
=x
2
+x
3
, 得基础解系η
1
=(1,1,0)
T
,η
2
=(1,0,1)
T
. 求属于a—2的一个特征向量,即求[A一(a一2)E]X=0的一个非零解: [*] 得[A一(a—2)E]X=0的同解方程组 [*] 得解η
3
=(一1,1,1)
T
. 令U=(η
1
,η
2
,η
3
),则 [*] (2)A—E的特征值为a(二重)和a一3,于是|A—E|=a
2
(a—3).
解析
转载请注明原文地址:https://jikaoti.com/ti/EPIRFFFM
0
考研数学三
相关试题推荐
设的一个特征值为λ1=2,其对应的特征向量为ξ1=求常数a,b,c;
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A一1的特征值并判断A一1是否可对角化.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求|A*+2E|.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.求矩阵A的全部特征值;
设有三个线性无关的特征向量,则a=________.
设n阶矩阵A满足A2+2A一3E=0.求:(A+2E)一1;
设四阶矩阵B满足BA一1=2AB+E,且A=,求矩阵B.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则().
n阶矩阵A经过若干次初等变换化为矩阵B,则().
随机试题
()是指师生之间在伦理道德层次上建立的超越代理朋友式的尊是爱生的关系,在人与人的相互影响中必然存在着道德和伦理关系。
接诊时,下列症状最具特征性的是下列哪种治疗对此病人是错误的
A.驴皮B.猪皮C.牛皮D.鳖甲E.鹿骨制备阿胶所使用的原料为()。
治疗心力衰竭的基本用药不包括
设备通电过程中的检查应包括()。
小王是某大学经济学专业大三的学生,他感觉如果取得会计从业资格证可以增加自己的就业机会,于是开始准备会计从业资格考试,学习《财经法规与会计职业道德》的内容时,小王买了一本某组织编写的会计法律法规大全,翻阅了其中部分内容,如《中华人民共和国会计法》《中华人民共
美国2007年以来爆发的次贷危机,使其金融体系的正常运行受到重创,进而给整个国民经济带来严重的后果。一方面,企业与个人对流动性的需求大幅增加;另一方面,巨额损失也削弱了银行等金融机构的贷款能力和意愿。为了最大限度地降低危机对经济复苏的不利影响,美联储通过多
如图,一块面积为400平方米的正方形土地被分割成甲、乙、丙、丁四个小长方形区域作为不同的功能区域,它们的面积分别为128、192、48和32平方米.乙的左下角划出一块正方形区域(阴影)作为公共区域,这块小正方形的面积为()平方米.
Sheintendstomovethatthecommittee______discussiononthisissue.
Crimeisn’trisingbecausethelawsarenotstrictenough,orbecausethe【21】______arenottoughenough,orsimplybecausethere
最新回复
(
0
)