首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A. 求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
设f(x1,x2,x3)=x12+2x22+x32+2ax1x2+2bx1x3+2cx2x3=xTAx,其中AT=A. 求正交矩阵Q,使得XTAX在正交变换X=QY下化为标准二次型.
admin
2017-03-02
43
问题
设f(x
1
,x
2
,x
3
)=x
1
2
+2x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx
2
x
3
=x
T
Ax,其中A
T
=A.
求正交矩阵Q,使得X
T
AX在正交变换X=QY下化为标准二次型.
选项
答案
[*] 由AB=O得B的列为AX=O的解,令[*].由Aα
1
=0α
1
,Aα
1
=0α
2
得λ
1
=λ
2
=0为A的特征值,α
1
,α
2
为λ
1
=λ
2
=0对应的线性无关的特征向量,又由λ
1
+λ
2
+λ
3
=tr(A)=6得λ
3
=4.令[*] 为λ
3
=4对应的特征向量,由A
T
=A得[*] λ
3
=4对应的线性无关的特征向量为[*] 令[*] 单位化得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/CSSRFFFM
0
考研数学三
相关试题推荐
若函数y=f(x)有fˊ(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
已知线性方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组的逋解,并说明理由.
求微分方程y"-2y’-e2x=0满足条件y(0)=1,y’(0)=1的解.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求a的值;
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=
设函数=_______.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2+4x1x2-8x2x3为标准形.
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
已知向量组(1):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4.的秩为4.
求函数y=(x-1)eπ/2+arctanx的单调区间和极值,并求该函数图形的渐近线.
随机试题
根据《国家赔偿法》的规定,侵犯公民生命健康权,造成部分或者全部丧失劳动能力的,应当支付:()
A.急性心功能不全B.急性肾衰C.弥散性血管内凝血D.急性呼吸窘迫综合征E.急性肝功能不全患者因急性肠梗阻,小肠坏死行小肠部分切除术,术后当天出现呼吸急促,端坐呼吸,咳粉红色泡沫样痰,最可能是【】
患者,男,40岁。因“急性广泛前壁心肌梗死”送急诊室就诊。送诊期间曾出现心室颤动,急诊医师接诊时检查发现患者呼之不应,压眶反应存在,瞳孔对光反射存在。此时该患者的意识状态为
眼部被有机磷污染可用于冲洗的液体是
关于建设民商事法律关系的特点,下列说法正确的是()。
下列关于普通合伙企业事务执行的表述中,符合《合伙企业法》规定的有()。
(2018年)下列各项中,关于企业固定资产折旧范围表述正确的有()。
社会管理不是为了加强控制,它是柔性的、协同的和互动的,这正是它与传统单位制管理模式的根本区别,也是“大管理”的要旨所在。长期以来,单位就是社会,它包揽了我们的一切。“单位制”和“身份制”构成了我国计划经济时代社会运行的基本特征,国家和政府通过严密的单位体系
古希腊哲学成果辉煌,是人类思想文化遗产中一颗灿烂的明珠。被西方人传为勾股定理古希腊版发现者的【1】提出“数是万物之源”等观点。受其影响颇深的【2】以“人不能两次踏进同一条河流”的格言而自古至今名闻天下,但他却认为世界的本原是【3】。【4】把万物的本原归结为
在VisualFoxPro中,下面关于属性、事件、方法叙述错误的是()。
最新回复
(
0
)