首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+αt,β+α2,…,β+αt线性无关.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+αt,β+α2,…,β+αt线性无关.
admin
2018-05-25
47
问题
设α
1
,α
2
,…,α
t
为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α
t
,β+α
2
,…,β+α
t
线性无关.
选项
答案
由α
1
,α
2
,…,α
t
线性无关=>β,α
1
,α
2
,…,α
t
线性无关.令kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…+k
t
(β+α
t
)=0.即(k+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0,∵β,α
1
,α
2
,…,α
t
线性无关 [*]=>k=k
1
=…=k,=0.∴β,β+α
1
,β+α
2
,…,β+α
t
线性无关
解析
转载请注明原文地址:https://jikaoti.com/ti/AvIRFFFM
0
考研数学三
相关试题推荐
若函数f(x)在(-∞,+∞)内满足关系式fˊ(x)=f(x),且f(0)=1.证明:f(x)=ex.
设f(x)=试确定常数a,b,c,使f(x)在x=0点处连续且可导.
[*]+C,其中C为任意常数
设In=(n>1).证明:(1)In+In-2=,并由此计算In;(2)
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
n维向量组α1,α2,…,α3(3≤s≤n)线性无关的充要条件是()
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
随机试题
德国“狂飙突进”作家的创作主张是()
由专业物流组织提供的物流服务被称为
未婚患者适合的检查方法是
A.静脉注射B.脊椎腔注射C.皮内注射D.肌肉注射E.腹腔注射不存在吸收过程的是()。
对于同一估价对象,宜选用两种以上的估价方法进行估价,如果估价对象适宜采用多种估价方法进行估价,应同时采用多种估价方法进行估价,则()。
下列CTCS体系结构中,属于以CTCS为行车安全保障基础,通过通信网络实现对列车运行控制和管理的是()。
以募集方式设立股份有限公司的,创立大会召开应有代表股份总数()的认股人出席,方可举行。
______musicsheisplaying!
某国幅员辽阔,是世界上最古老的大陆之一,这里有阳光灿烂的海滩、五彩缤纷的珊瑚、独特众多的珍禽异兽……该国最可能是()。
Whydoesthespeakersaythatitisn’tafaulttobeshy?
最新回复
(
0
)