厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24—0.2p1和q2=10—0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利

admin2018-09-20  40

问题 厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24—0.2p1和q2=10—0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利润为多少?

选项

答案总收入函数为 R=p1q1+p2q2=24p1—0.2p12+10p2—0.05p22. 总利润函数为 L=R—C=32p1—0.2p12一0.05p22+12p2一1395. 由极值的必要条件,得方程组[*]解此方程组得p1=80,p2=120. 由问题的实际含义可知,当p1=80,p2=120时,厂家所获得的总利润最大,其最大总利润为 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/AnIRFFFM
0

最新回复(0)