首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
admin
2016-10-20
26
问题
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
选项
答案
因为A的行向量是Cx=0的解,即CA
T
=0,那么C(BA)
T
=CA
T
B
T
=OB
T
=0. 可见BA的行向量是方程组Cx=0的解. 由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n-r(C). 又因B是可逆矩阵,r(BA)=r(A)=m=n-r(C),所以BA的行向量线性无关,其向量个数正好是n-r(C),从而是方程组Cx=0的基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/y3xRFFFM
0
考研数学三
相关试题推荐
1/3
1/2.
设有来自三个地区的10名、15名、25名考生的报告表,其中女生的报名表分别为3份、7份、5份.随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率q.
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求抛物线y=ax2+bx+c上具有水平切线的点.
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
随机试题
高等教育()是指不同要求和程度的高等教育构成状态,主要表现为专科教育、本科教育和研究生教育等。
刚地弓形虫的感染阶段是
女,28岁。因“抽搐、意识不清、高热3天”入院。病程中抽搐表现为双上肢弯曲,双下肢伸直,神志不清,伴有瞳孔扩大,舌咬伤及尿失禁。每次持续5~10min不等,发作间歇期意识不恢复,处于昏迷状态。同时伴有高热,体温达38.2~39.7℃。既往有头部外伤史,入院
某项目的静态投资为3750万元,按进度计划,项目建设期为两年,两年的投资分年使用,第1年为40%,第2年为60%,建设期内平均价格变动率预测为6%,则该项目建设期的涨价预备费为( )万元。
某投资者年初以1股10元的价格买入A公司的股票,到年底股票价格为15元,并于年底分得现金股息1.5元,其股利收益率为( )。
反映客户主观上对风险的态度的概念是()。
下列指标和时间构成的数列中,属于平均数时间序列的是()。
为了加强艾滋病预防意识、普及艾滋病预防知识、提高艾滋病预防能力,市卫生部门计划在世界艾滋病日开展预防艾滋病宣传活动。假如这个宣传活动由你负责,请你制订三个宣传主题,并选取一个主题,谈谈你将如何开展宣传工作。
在word中,如果要使文档内容横向打印,应利用菜单项(42)进行设置。
A、10.B、4.C、3.D、1.D短文提到,“我”画树时会用很多浓淡不同的绿色和更多不同色调的褐色。可知“我”用了多种颜色。所以D正确。由选项中的关键词可猜测本题问与画画有关的内容。原文提到“我”用了不同色度的绿色和棕色来画树,其中棕色比绿色要多
最新回复
(
0
)