已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.

admin2016-10-20  26

问题 已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.

选项

答案因为A的行向量是Cx=0的解,即CAT=0,那么C(BA)T=CATBT=OBT=0. 可见BA的行向量是方程组Cx=0的解. 由于A的行向量是基础解系,所以A的行向量线性无关,于是m=r(A)=n-r(C). 又因B是可逆矩阵,r(BA)=r(A)=m=n-r(C),所以BA的行向量线性无关,其向量个数正好是n-r(C),从而是方程组Cx=0的基础解系.

解析
转载请注明原文地址:https://jikaoti.com/ti/y3xRFFFM
0

相关试题推荐
随机试题
最新回复(0)