设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=0,=1,则

admin2017-10-23  53

问题 设f(x)在x=0的某邻域内有二阶连续导数,且f’(0)=0,=1,则

选项 A、f(0)是f(x)的极大值.
B、f(0)是f(x)的极小值.
C、(0,f(0))是曲线y=f(x)的拐点.
D、x=0不是f(x)的极值点,(0,f(0))也不是曲线y=f(x)的拐点.

答案B

解析 由于

又f(x)在x=0的某邻域内有二阶连续导数,所以f"(0)=0,但不能确定点(0,f(0))为曲线y=f(x)的拐点.由=1>0,根据极限的保号性可知,在x=0的某邻域内必有>0,即f"(x)>0,从而f’(x)在该邻域内单调增加.又因f’(0)=0,所以f’(x)在x=0两侧变号,且在x=0的空心邻域内,当x<0时f’(x)<f’(0)=0,当x>0时f’(x)>f’(0)=0,由极值第一充分条件可知,x=0为f(x)的极小值点.即f(0)是f(x)的极小值,故选(B).
转载请注明原文地址:https://jikaoti.com/ti/AZKRFFFM
0

最新回复(0)