设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。 如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。

admin2017-02-13  47

问题 设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α123
如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。

选项

答案根据A3β=Aβ可得 A(β,Aβ,A2β)=(Aβ,A2β,A3β)=(Aβ,A2β,Aβ)=(β,Aβ,A2β)[*],令P=(β,Aβ,A2β),则矩阵P是可你的,P-1AP=[*]=B,根据相似矩阵的秩及行列式相等,有r(A-E)= r(B-E)=[*]=2, |A+2E|=|B+2E|=[*]=6。

解析
转载请注明原文地址:https://jikaoti.com/ti/ANSRFFFM
0

随机试题
最新回复(0)