首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
admin
2016-10-21
56
问题
设f(χ)在(a,b)二阶可导,
χ
1
,χ
2
∈(a,b),χ
1
≠χ
2
,
t∈(0,1),则
(Ⅰ)若f〞(χ)>0(
χ∈(a,b)),有
f[tχ
1
+(1-t
2
)χ
2
]<tf(χ
1
)+(1-t)f(χ
2
), (4.6)
特别有
(Ⅱ)若f〞(χ)<0(
χ∈(a,b)),有
f[tχ
1
+(1-t)χ
2
]>tf(χ
1
)+(1-t)f(χ
2
), (4.7)
特别有
选项
答案
(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f〞(χ)>0(χ∈(a,b))[*]f(χ)在(a,b)为凹的[*](4.5)相应的式子成立.注意tχ
1
+(1-t)χ
2
∈(a,b)[*] f(χ
1
)>[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
](1-t)(χ
1
-χ
2
), f(χ
2
)>f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ
2
-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]-f′[tχ
1
+(1-t)χ
2
]t(χ
1
-χ
2
), 两式分别乘t与(1-t)后相加得 tf(χ
1
)+(1-t)f(χ
2
)>f[tχ
1
+(1-t)χ
2
].
解析
转载请注明原文地址:https://jikaoti.com/ti/ABzRFFFM
0
考研数学二
相关试题推荐
证明
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加,证明:f(x)在[0,1]上连续.
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式验证
设函数f(x)在[a,b]上具有连续的二阶导数,证明:在(a,b)内存在一点ξ,使得∫abf(x)dx=(b-a)(b-a)3f"(ξ)①
设,其中f具有二阶连续偏导数,g具有二阶连续导数,求.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
随机试题
燃烧速率标志火药能量释放的能力,火药的燃烧特性主要取决于火药的()。
诊断心的病证,哪种表现最为典型
患者,男,40岁。因剑突下烧灼感与反酸3个月就诊,反流物呈酸性,胃灼热与反酸常发生在餐后,进食时胸骨后有梗塞感。问题2:此种患者最适宜的体位是
急性梗阻性化脓性胆管炎的最常见的梗阻因素是( )。
房地产经纪人在协助买卖双方交验住宅时,正确的做法有()。
汉译英:“报关行;出口结关”,正确的翻译为( )。
对单一法人客户的财务报表分析主要是对资产负债表和财务比率进行分析。()
甲企业没有优先股,2016年发行在外的普通股股数没有变化,2016年年末的每股净资产为12元。2016年的每股收益为4元,每股股利为1元,2016年的净资产增加了900万元,2016年年末的资产总额为10000万元,则2016年末的资产负债率为(
下列判断正确的有()。(1)“十一五”期间该地区每年“科研基建费”均多于“其他费用”(2)“十一五”期间该地区专业技术人员人均财政科技拨款逐年增加(3)“十一五”期间该地区财政科技拨款总和不到3500亿元
Sendingyourchildrentopianoorviolinlessonsinabid(努力)toboosttheiracademicachievementisawasteofmoney,according
最新回复
(
0
)