首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 证明矩阵A能相似于对角矩阵;
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。 证明矩阵A能相似于对角矩阵;
admin
2019-12-24
44
问题
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。
证明矩阵A能相似于对角矩阵;
选项
答案
因为A的各行元素和为零,从而λ=0为A的一个特征值,并且γ=(1,1,1)
T
为A属于λ=0的特征向量。 另一方面,又因为Aα=3β,Aβ=3α,所以 A(α+β)=3(α+β),A(α-β)=-3(α-β), λ=3和λ=-3为A的两个特征值,并且α+β和α-β为A属于λ=3和λ=-3的特征向量,可见A有三个不同的特征值,所以A能相似于对角矩阵。
解析
转载请注明原文地址:https://jikaoti.com/ti/9giRFFFM
0
考研数学三
相关试题推荐
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0x<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(I)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},
设随机变量Y~E(1),且X与Y相互独立.记Z=(2X—1)Y,(Y,Z)的分布函数为F(y,z).试求:(I)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数k满足什么条件时A+kE正定?
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
A=.则()中矩阵在实数域上与A合同.
设随机变量X的分布函数为已知P{一1<X<1}=.则a=______,b=_______.
①a,b取什么值时存在矩阵X,满足AX—AX=B?②求满足AX—AX=B的矩阵X的一般形式.
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n一3,证明η1,η2,η3为AX=0的一个基础解系.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
随机试题
何谓火力发电厂?
口腔生态系的影响因素不包括
关于慢性宫颈炎,以下正确的是
在国内工程总承包中,()等方面风险同时存在。
与传统的融资方式相比,项目融资具有很多新的特点。在给出的下列各项中,不属于项目融资基本特点的是( )。
根据支付结算法律制度的规定,关于单位存款人申请变更预留银行的单位财务专用章的下列表述中,正确的有()。(2017年)
贸易保护是把“双刃剑”。一个国家在运用技术性贸易壁垒阻碍外国农产品进入本国市场.给出口国生产企业造成损失的同时,也给本国的经销商和消费者带来相应的伤害。这种做法未必会得到国内不同人群的一致支持。这种情况实际也为出口企业提供了一种可能,即可以由行业协会出面,
止痛片:安眠药:药品()
(2011年真题)依法被指定的枪支制造企业,在境内非法销售本企业制造的、射击精度不合格的枪支。该行为构成()。
有如下程序:#includeusingnamespacestd;intmain(){intsum;for(inti=0;i<3;i+=
最新回复
(
0
)