首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
admin
2018-09-20
47
问题
已知向量组α
1
,α
2
,…,α
s+1
(s>1)线性无关,β
i
=α
i
+tα
i+1
,i=1,2,…,s.证明:向量组β
1
,β
2
,…,β
s
线性无关.
选项
答案
设存在一组数k
1
,k
2
,…,k
s
,使得 k
1
β
1
+k
2
β
2
+…+k
s
β
s
=0 成立,即 k
1
(α
1
+tα
2
)+k
2
(α
2
+tα
3
)+…+k
s
(α
s
+tα
s+1
) =k
1
α
1
+(k
1
t+k
2
)α
2
+(k
2
t+k
3
)α
3
+…+(k
s-1
t+k
s
)α
s
+k
s
tα
s+1
=0. 因α
1
,α
2
,…,α
s+1
线性无关,故 [*] 得唯一解k
1
=k
2
=…=k
s
=0,故β
1
,β
2
,…,β
s
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/9fIRFFFM
0
考研数学三
相关试题推荐
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
证明:当x>1时,0<lnx+
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设齐次线性方程组只有零解,则a满足的条件是______.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
参数a取何值时,线性方程组有无数个解?求其通解.
随机试题
对卖方延迟交货常用的救济方法有()。
ACEI主要的副作用有_______等,最严重的副作用是_______。
患者女,48岁。近一年来体重减轻,多食易饥,怕热多汗,易怒,心悸,体检:消瘦,双侧甲状腺肿大,心率110次/分。该患者最可能的诊断是
某男,69岁,近日腰部隐隐作痛,酸软无力,劳则加重,卧则减轻,伴有耳鸣耳聋。兼有手足心热,潮热盗汗,口燥咽干,舌红少苔,脉细数。宜选用的治法是
环境影响评价要求实行环境与经济协调发展的政策,其主要含义被归纳为“三建设、三同步、三统一”。其中“三建设”是指()。
如果操作技能发展较言语技能好,则不可能出现的是()。
我国事业单位分为全额拨款、差额拨款和自收自支三种类型。在很多人的意识中,全额拨款的事业单位“旱涝保收”,最具“含金量”,只要干好工作就能“衣食无忧”;而自收自支的事业单位则需要想尽办法去创收,员工感觉“压力山大”。此外,自收自支事业单位和全额、差额拨款事业
假定用下面的语句打开文件:Open"Filel.txt"ForInputAs#1则不能正确读文件的语句是
假定你是李明二你将代表学校接待于6月23-26日来访的英国儿童合唱团(choir),请根据表中所给内容给对方团长Mr.Stevenson写一封电子邮件。时间活动安排 6月23日 接机
A、 B、 C、 C(A)该题询问我可以利用哪些交通方式,而该选项回答了“他”的交通方式。所以错误。(B)该选项应该用于回答howoften引导的问句。(C)对于询问交通方式的问句,并没有用公共汽车、出租车等这些特定交
最新回复
(
0
)