首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中 (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ)BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
admin
2017-09-15
52
问题
设(Ⅰ)
,α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,其中
(1)求方程组(Ⅰ)的基础解系;
(2)求方程组(Ⅱ)BX=0的基础解系;
(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
选项
答案
(1)方程组(Ⅰ)的基础解系为 [*] (2)因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量, α
4
-α
1
=[*],α
2
+α
3
-2α
1
=[*] 为方程组(Ⅱ)的基础解系; (3)方程组(Ⅰ)的通解为k
1
ξ
1
+k
2
ξ
2
=[*], 方程组(Ⅱ)的通解为[*] [*] 取k
2
=k,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,1,1,1)
T
(其中k为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/8edRFFFM
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设区域D是由直线y=x-1,y=x+1,x=2及坐标轴围成的区域(图3-8).(X,Y)服从区域D上的均匀分布.求条件密度函数fY|X(y|x)和fX|Y(x|y).
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设,证明fˊ(x)在点x=0处连续.
fˊ(x。)=0,f〞(x。)>0是函数.f(x)在点x=x。处取得极小值的一个[].
设函数,当k为何值时,f(x)在点x=0处连续.
若f(x)是连续函数,证明
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设u=f(x,y,xyz),函数z=z(x,y)由h(xy+z-t)dt确定,其中f连续可偏导,h连续,求
随机试题
DOS把存在磁盘中的任何信息都称为文件。
末梢血涂片中嗜多色性细胞增多,常提示下述何者数量增多
动脉血压突然升高时,能引起
某消化性溃疡病人,原有疼痛节律消失,变为持续上腹疼痛,伴频繁呕吐,呕吐物含发酵性宿食。应采取的治疗措施为
下列有关信用证的说法中,不正确的是()。
表演游戏和角色游戏的区别主要是()。①游戏主题来源不同②游戏内容来源不同③游戏中情况的产生不同④游戏过程具有想象性和创造性
地球上很多国家和地区闹水荒。对其原因的分析有误的是()。
《刑法》第310条规定:明知是犯罪的人而为其提供隐藏处所、财物,帮助其逃匿或者作假证明包庇的,处三年以下有期徒刑、拘役或者管制;情节严重的,处三年以上十年以下有期徒刑。犯前款罪,事前通谋的,以共同犯罪论处。本条规定的罪名是什么?“明知”的含义是
Yetinonewaytheyarereallysofortunate.
A=AudiA3B=HondaCivicC=Rover200D=ToyotaCamryHybridWhichcar...hasadriverseatthatcanbeadjustedtofitmo
最新回复
(
0
)