设y=y(x)由确定,且y|t=0=1,y’|t=0=-1,则曲线y=y(x)在x=0对应点处的曲率为______________.

admin2021-03-16  43

问题 设y=y(x)由确定,且y|t=0=1,y’|t=0=-1,则曲线y=y(x)在x=0对应点处的曲率为______________.

选项

答案[*]

解析 -y=2t的通解为
y=C1e-t+C2et-2t;
由y|t=0=1,y’|t=0=-1得C1=0,C2=1,即y=et-2t;
当x=0,即t3+2t=0,则t=0;

所求曲率为
转载请注明原文地址:https://jikaoti.com/ti/7elRFFFM
0

最新回复(0)